![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupubuz2 | Structured version Visualization version GIF version |
Description: A sequence with values in the extended reals, and with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
limsupubuz2.1 | ⊢ Ⅎ𝑗𝜑 |
limsupubuz2.2 | ⊢ Ⅎ𝑗𝐹 |
limsupubuz2.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupubuz2.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupubuz2.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
limsupubuz2.6 | ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) |
Ref | Expression |
---|---|
limsupubuz2 | ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupubuz2.1 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
2 | limsupubuz2.2 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
3 | limsupubuz2.4 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 3 | uzssre2 45357 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
6 | limsupubuz2.5 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
7 | limsupubuz2.6 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) | |
8 | 1, 2, 5, 6, 7 | limsupub2 45768 | . 2 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
9 | limsupubuz2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | 3 | rexuzre 15388 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞ ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞ ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
12 | 8, 11 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 ℝcr 11152 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 lim supclsp 15503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-ico 13390 df-fl 13829 df-limsup 15504 |
This theorem is referenced by: liminflbuz2 45771 liminflimsupxrre 45773 |
Copyright terms: Public domain | W3C validator |