Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuz2 Structured version   Visualization version   GIF version

Theorem limsupubuz2 45769
Description: A sequence with values in the extended reals, and with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
limsupubuz2.1 𝑗𝜑
limsupubuz2.2 𝑗𝐹
limsupubuz2.3 (𝜑𝑀 ∈ ℤ)
limsupubuz2.4 𝑍 = (ℤ𝑀)
limsupubuz2.5 (𝜑𝐹:𝑍⟶ℝ*)
limsupubuz2.6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupubuz2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
Distinct variable groups:   𝑘,𝐹   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupubuz2
StepHypRef Expression
1 limsupubuz2.1 . . 3 𝑗𝜑
2 limsupubuz2.2 . . 3 𝑗𝐹
3 limsupubuz2.4 . . . . 5 𝑍 = (ℤ𝑀)
43uzssre2 45357 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupubuz2.5 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
7 limsupubuz2.6 . . 3 (𝜑 → (lim sup‘𝐹) ≠ +∞)
81, 2, 5, 6, 7limsupub2 45768 . 2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) < +∞))
9 limsupubuz2.3 . . 3 (𝜑𝑀 ∈ ℤ)
103rexuzre 15388 . . 3 (𝑀 ∈ ℤ → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ↔ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) < +∞)))
119, 10syl 17 . 2 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ↔ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) < +∞)))
128, 11mpbird 257 1 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wne 2938  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  wf 6559  cfv 6563  cr 11152  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cz 12611  cuz 12876  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-ico 13390  df-fl 13829  df-limsup 15504
This theorem is referenced by:  liminflbuz2  45771  liminflimsupxrre  45773
  Copyright terms: Public domain W3C validator