MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscl Structured version   Visualization version   GIF version

Theorem nvscl 30612
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscl ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem nvscl
StepHypRef Expression
1 eqid 2736 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30601 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2736 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30589 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30591 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30590 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vccl 30549 . 2 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
102, 9syl3an1 1163 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  1st c1st 7991  cc 11132  CVecOLDcvc 30544  NrmCVeccnv 30570   +𝑣 cpv 30571  BaseSetcba 30572   ·𝑠OLD cns 30573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-1st 7993  df-2nd 7994  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586
This theorem is referenced by:  nvmval2  30629  nvmf  30631  nvmdi  30634  nvnegneg  30635  nvpncan2  30639  nvaddsub4  30643  nvdif  30652  nvpi  30653  nvmtri  30657  nvabs  30658  nvge0  30659  imsmetlem  30676  smcnlem  30683  ipval2lem2  30690  4ipval2  30694  ipval3  30695  sspmval  30719  lnocoi  30743  lnomul  30746  0lno  30776  nmlno0lem  30779  nmblolbii  30785  blocnilem  30790  ip0i  30811  ip1ilem  30812  ipdirilem  30815  ipasslem1  30817  ipasslem2  30818  ipasslem4  30820  ipasslem5  30821  ipasslem8  30823  ipasslem9  30824  ipasslem10  30825  ipasslem11  30826  dipassr  30832  dipsubdir  30834  siilem1  30837  ipblnfi  30841  ubthlem2  30857  minvecolem2  30861  hhshsslem2  31254
  Copyright terms: Public domain W3C validator