MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscl Structured version   Visualization version   GIF version

Theorem nvscl 30508
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscl ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem nvscl
StepHypRef Expression
1 eqid 2725 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30497 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2725 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30485 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30487 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30486 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vccl 30445 . 2 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
102, 9syl3an1 1160 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  1st c1st 7992  cc 11138  CVecOLDcvc 30440  NrmCVeccnv 30466   +𝑣 cpv 30467  BaseSetcba 30468   ·𝑠OLD cns 30469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-1st 7994  df-2nd 7995  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-nmcv 30482
This theorem is referenced by:  nvmval2  30525  nvmf  30527  nvmdi  30530  nvnegneg  30531  nvpncan2  30535  nvaddsub4  30539  nvdif  30548  nvpi  30549  nvmtri  30553  nvabs  30554  nvge0  30555  imsmetlem  30572  smcnlem  30579  ipval2lem2  30586  4ipval2  30590  ipval3  30591  sspmval  30615  lnocoi  30639  lnomul  30642  0lno  30672  nmlno0lem  30675  nmblolbii  30681  blocnilem  30686  ip0i  30707  ip1ilem  30708  ipdirilem  30711  ipasslem1  30713  ipasslem2  30714  ipasslem4  30716  ipasslem5  30717  ipasslem8  30719  ipasslem9  30720  ipasslem10  30721  ipasslem11  30722  dipassr  30728  dipsubdir  30730  siilem1  30733  ipblnfi  30737  ubthlem2  30753  minvecolem2  30757  hhshsslem2  31150
  Copyright terms: Public domain W3C validator