MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscl Structured version   Visualization version   GIF version

Theorem nvscl 30606
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscl ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem nvscl
StepHypRef Expression
1 eqid 2731 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30595 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2731 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30583 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30585 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30584 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vccl 30543 . 2 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
102, 9syl3an1 1163 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  1st c1st 7919  cc 11004  CVecOLDcvc 30538  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580
This theorem is referenced by:  nvmval2  30623  nvmf  30625  nvmdi  30628  nvnegneg  30629  nvpncan2  30633  nvaddsub4  30637  nvdif  30646  nvpi  30647  nvmtri  30651  nvabs  30652  nvge0  30653  imsmetlem  30670  smcnlem  30677  ipval2lem2  30684  4ipval2  30688  ipval3  30689  sspmval  30713  lnocoi  30737  lnomul  30740  0lno  30770  nmlno0lem  30773  nmblolbii  30779  blocnilem  30784  ip0i  30805  ip1ilem  30806  ipdirilem  30809  ipasslem1  30811  ipasslem2  30812  ipasslem4  30814  ipasslem5  30815  ipasslem8  30817  ipasslem9  30818  ipasslem10  30819  ipasslem11  30820  dipassr  30826  dipsubdir  30828  siilem1  30831  ipblnfi  30835  ubthlem2  30851  minvecolem2  30855  hhshsslem2  31248
  Copyright terms: Public domain W3C validator