|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nvscl | Structured version Visualization version GIF version | ||
| Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nvscl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) | 
| nvscl.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | 
| Ref | Expression | 
|---|---|
| nvscl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 2 | 1 | nvvc 30635 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) | 
| 3 | eqid 2736 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 4 | 3 | vafval 30623 | . . 3 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) | 
| 5 | nvscl.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 6 | 5 | smfval 30625 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) | 
| 7 | nvscl.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 3 | bafval 30624 | . . 3 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) | 
| 9 | 4, 6, 8 | vccl 30583 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | 
| 10 | 2, 9 | syl3an1 1163 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 ℂcc 11154 CVecOLDcvc 30578 NrmCVeccnv 30604 +𝑣 cpv 30605 BaseSetcba 30606 ·𝑠OLD cns 30607 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-1st 8015 df-2nd 8016 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-nmcv 30620 | 
| This theorem is referenced by: nvmval2 30663 nvmf 30665 nvmdi 30668 nvnegneg 30669 nvpncan2 30673 nvaddsub4 30677 nvdif 30686 nvpi 30687 nvmtri 30691 nvabs 30692 nvge0 30693 imsmetlem 30710 smcnlem 30717 ipval2lem2 30724 4ipval2 30728 ipval3 30729 sspmval 30753 lnocoi 30777 lnomul 30780 0lno 30810 nmlno0lem 30813 nmblolbii 30819 blocnilem 30824 ip0i 30845 ip1ilem 30846 ipdirilem 30849 ipasslem1 30851 ipasslem2 30852 ipasslem4 30854 ipasslem5 30855 ipasslem8 30857 ipasslem9 30858 ipasslem10 30859 ipasslem11 30860 dipassr 30866 dipsubdir 30868 siilem1 30871 ipblnfi 30875 ubthlem2 30891 minvecolem2 30895 hhshsslem2 31288 | 
| Copyright terms: Public domain | W3C validator |