MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscl Structured version   Visualization version   GIF version

Theorem nvscl 30555
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscl ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem nvscl
StepHypRef Expression
1 eqid 2729 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30544 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30532 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30534 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30533 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vccl 30492 . 2 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
102, 9syl3an1 1163 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  1st c1st 7966  cc 11066  CVecOLDcvc 30487  NrmCVeccnv 30513   +𝑣 cpv 30514  BaseSetcba 30515   ·𝑠OLD cns 30516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-1st 7968  df-2nd 7969  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529
This theorem is referenced by:  nvmval2  30572  nvmf  30574  nvmdi  30577  nvnegneg  30578  nvpncan2  30582  nvaddsub4  30586  nvdif  30595  nvpi  30596  nvmtri  30600  nvabs  30601  nvge0  30602  imsmetlem  30619  smcnlem  30626  ipval2lem2  30633  4ipval2  30637  ipval3  30638  sspmval  30662  lnocoi  30686  lnomul  30689  0lno  30719  nmlno0lem  30722  nmblolbii  30728  blocnilem  30733  ip0i  30754  ip1ilem  30755  ipdirilem  30758  ipasslem1  30760  ipasslem2  30761  ipasslem4  30763  ipasslem5  30764  ipasslem8  30766  ipasslem9  30767  ipasslem10  30768  ipasslem11  30769  dipassr  30775  dipsubdir  30777  siilem1  30780  ipblnfi  30784  ubthlem2  30800  minvecolem2  30804  hhshsslem2  31197
  Copyright terms: Public domain W3C validator