![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvscl | Structured version Visualization version GIF version |
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvscl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvscl.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvscl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 30647 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | eqid 2740 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 30635 | . . 3 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
5 | nvscl.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 30637 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nvscl.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 30636 | . . 3 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
9 | 4, 6, 8 | vccl 30595 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) |
10 | 2, 9 | syl3an1 1163 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 ℂcc 11182 CVecOLDcvc 30590 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-1st 8030 df-2nd 8031 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 |
This theorem is referenced by: nvmval2 30675 nvmf 30677 nvmdi 30680 nvnegneg 30681 nvpncan2 30685 nvaddsub4 30689 nvdif 30698 nvpi 30699 nvmtri 30703 nvabs 30704 nvge0 30705 imsmetlem 30722 smcnlem 30729 ipval2lem2 30736 4ipval2 30740 ipval3 30741 sspmval 30765 lnocoi 30789 lnomul 30792 0lno 30822 nmlno0lem 30825 nmblolbii 30831 blocnilem 30836 ip0i 30857 ip1ilem 30858 ipdirilem 30861 ipasslem1 30863 ipasslem2 30864 ipasslem4 30866 ipasslem5 30867 ipasslem8 30869 ipasslem9 30870 ipasslem10 30871 ipasslem11 30872 dipassr 30878 dipsubdir 30880 siilem1 30883 ipblnfi 30887 ubthlem2 30903 minvecolem2 30907 hhshsslem2 31300 |
Copyright terms: Public domain | W3C validator |