MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscl Structured version   Visualization version   GIF version

Theorem nvscl 30573
Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscl ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem nvscl
StepHypRef Expression
1 eqid 2734 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30562 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2734 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30550 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30552 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30551 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vccl 30510 . 2 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
102, 9syl3an1 1163 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  1st c1st 7994  cc 11135  CVecOLDcvc 30505  NrmCVeccnv 30531   +𝑣 cpv 30532  BaseSetcba 30533   ·𝑠OLD cns 30534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-1st 7996  df-2nd 7997  df-vc 30506  df-nv 30539  df-va 30542  df-ba 30543  df-sm 30544  df-0v 30545  df-nmcv 30547
This theorem is referenced by:  nvmval2  30590  nvmf  30592  nvmdi  30595  nvnegneg  30596  nvpncan2  30600  nvaddsub4  30604  nvdif  30613  nvpi  30614  nvmtri  30618  nvabs  30619  nvge0  30620  imsmetlem  30637  smcnlem  30644  ipval2lem2  30651  4ipval2  30655  ipval3  30656  sspmval  30680  lnocoi  30704  lnomul  30707  0lno  30737  nmlno0lem  30740  nmblolbii  30746  blocnilem  30751  ip0i  30772  ip1ilem  30773  ipdirilem  30776  ipasslem1  30778  ipasslem2  30779  ipasslem4  30781  ipasslem5  30782  ipasslem8  30784  ipasslem9  30785  ipasslem10  30786  ipasslem11  30787  dipassr  30793  dipsubdir  30795  siilem1  30798  ipblnfi  30802  ubthlem2  30818  minvecolem2  30822  hhshsslem2  31215
  Copyright terms: Public domain W3C validator