![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcidOLD | Structured version Visualization version GIF version |
Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete theorem, use clmvs1 23300 together with cvsclm 23333 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
vciOLD.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vciOLD.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vciOLD.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
vcidOLD | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vciOLD.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vciOLD.2 | . . . 4 ⊢ 𝑆 = (2nd ‘𝑊) | |
3 | vciOLD.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | vciOLD 27988 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
5 | simpl 476 | . . . . 5 ⊢ (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → (1𝑆𝑥) = 𝑥) | |
6 | 5 | ralimi 3134 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥 ∈ 𝑋 (1𝑆𝑥) = 𝑥) |
7 | 6 | 3ad2ant3 1126 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥 ∈ 𝑋 (1𝑆𝑥) = 𝑥) |
8 | 4, 7 | syl 17 | . 2 ⊢ (𝑊 ∈ CVecOLD → ∀𝑥 ∈ 𝑋 (1𝑆𝑥) = 𝑥) |
9 | oveq2 6930 | . . . 4 ⊢ (𝑥 = 𝐴 → (1𝑆𝑥) = (1𝑆𝐴)) | |
10 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
11 | 9, 10 | eqeq12d 2793 | . . 3 ⊢ (𝑥 = 𝐴 → ((1𝑆𝑥) = 𝑥 ↔ (1𝑆𝐴) = 𝐴)) |
12 | 11 | rspccva 3510 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 (1𝑆𝑥) = 𝑥 ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
13 | 8, 12 | sylan 575 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 × cxp 5353 ran crn 5356 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 1st c1st 7443 2nd c2nd 7444 ℂcc 10270 1c1 10273 + caddc 10275 · cmul 10277 AbelOpcablo 27971 CVecOLDcvc 27985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-1st 7445 df-2nd 7446 df-vc 27986 |
This theorem is referenced by: vc2OLD 27995 vc0 28001 vcm 28003 nvsid 28054 |
Copyright terms: Public domain | W3C validator |