Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcidOLD Structured version   Visualization version   GIF version

Theorem vcidOLD 27991
 Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete theorem, use clmvs1 23300 together with cvsclm 23333 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcidOLD ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)

Proof of Theorem vcidOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . 4 𝐺 = (1st𝑊)
2 vciOLD.2 . . . 4 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3vciOLD 27988 . . 3 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpl 476 . . . . 5 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → (1𝑆𝑥) = 𝑥)
65ralimi 3134 . . . 4 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋 (1𝑆𝑥) = 𝑥)
763ad2ant3 1126 . . 3 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋 (1𝑆𝑥) = 𝑥)
84, 7syl 17 . 2 (𝑊 ∈ CVecOLD → ∀𝑥𝑋 (1𝑆𝑥) = 𝑥)
9 oveq2 6930 . . . 4 (𝑥 = 𝐴 → (1𝑆𝑥) = (1𝑆𝐴))
10 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
119, 10eqeq12d 2793 . . 3 (𝑥 = 𝐴 → ((1𝑆𝑥) = 𝑥 ↔ (1𝑆𝐴) = 𝐴))
1211rspccva 3510 . 2 ((∀𝑥𝑋 (1𝑆𝑥) = 𝑥𝐴𝑋) → (1𝑆𝐴) = 𝐴)
138, 12sylan 575 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  ∀wral 3090   × cxp 5353  ran crn 5356  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922  1st c1st 7443  2nd c2nd 7444  ℂcc 10270  1c1 10273   + caddc 10275   · cmul 10277  AbelOpcablo 27971  CVecOLDcvc 27985 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-1st 7445  df-2nd 7446  df-vc 27986 This theorem is referenced by:  vc2OLD  27995  vc0  28001  vcm  28003  nvsid  28054
 Copyright terms: Public domain W3C validator