MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcidOLD Structured version   Visualization version   GIF version

Theorem vcidOLD 28343
Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete theorem, use clmvs1 23699 together with cvsclm 23732 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcidOLD ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)

Proof of Theorem vcidOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . 4 𝐺 = (1st𝑊)
2 vciOLD.2 . . . 4 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3vciOLD 28340 . . 3 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpl 485 . . . . 5 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → (1𝑆𝑥) = 𝑥)
65ralimi 3162 . . . 4 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋 (1𝑆𝑥) = 𝑥)
763ad2ant3 1131 . . 3 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋 (1𝑆𝑥) = 𝑥)
84, 7syl 17 . 2 (𝑊 ∈ CVecOLD → ∀𝑥𝑋 (1𝑆𝑥) = 𝑥)
9 oveq2 7166 . . . 4 (𝑥 = 𝐴 → (1𝑆𝑥) = (1𝑆𝐴))
10 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
119, 10eqeq12d 2839 . . 3 (𝑥 = 𝐴 → ((1𝑆𝑥) = 𝑥 ↔ (1𝑆𝐴) = 𝐴))
1211rspccva 3624 . 2 ((∀𝑥𝑋 (1𝑆𝑥) = 𝑥𝐴𝑋) → (1𝑆𝐴) = 𝐴)
138, 12sylan 582 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140   × cxp 5555  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  AbelOpcablo 28323  CVecOLDcvc 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-1st 7691  df-2nd 7692  df-vc 28338
This theorem is referenced by:  vc2OLD  28347  vc0  28353  vcm  28355  nvsid  28406
  Copyright terms: Public domain W3C validator