Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkiswwlks2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for wlkiswwlks2 28240. (Contributed by Alexander van der Vekens, 20-Jul-2018.) |
Ref | Expression |
---|---|
wlkiswwlks2lem.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
Ref | Expression |
---|---|
wlkiswwlks2lem2 | ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkiswwlks2lem.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) | |
2 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑃‘𝑥) = (𝑃‘𝐼)) | |
3 | fvoveq1 7298 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1))) | |
4 | 2, 3 | preq12d 4677 | . . 3 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) |
5 | 4 | fveq2d 6778 | . 2 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
6 | simpr 485 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1))) | |
7 | fvexd 6789 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) ∈ V) | |
8 | 1, 5, 6, 7 | fvmptd3 6898 | 1 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 ↦ cmpt 5157 ◡ccnv 5588 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 ℕ0cn0 12233 ..^cfzo 13382 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 |
This theorem is referenced by: wlkiswwlks2lem4 28237 |
Copyright terms: Public domain | W3C validator |