MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem4 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem4 27577
Description: Lemma 4 for wlkiswwlks2 27580. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥
Allowed substitution hints:   𝐸(𝑖)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem wlkiswwlks2lem4
StepHypRef Expression
1 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21wlkiswwlks2lem1 27574 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
323adant1 1122 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
4 lencl 13871 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
543ad2ant2 1126 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
61wlkiswwlks2lem2 27575 . . . . . . . . 9 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
75, 6sylan 580 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87adantr 481 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
98fveq2d 6667 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
10 wlkiswwlks2lem.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
1110uspgrf1oedg 26885 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1210rneqi 5800 . . . . . . . . . . . 12 ran 𝐸 = ran (iEdg‘𝐺)
13 edgval 26761 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
1412, 13eqtr4i 2844 . . . . . . . . . . 11 ran 𝐸 = (Edg‘𝐺)
15 f1oeq3 6599 . . . . . . . . . . 11 (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1711, 16sylibr 235 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
18173ad2ant1 1125 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1918adantr 481 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
20 f1ocnvfv2 7025 . . . . . . 7 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2119, 20sylan 580 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
229, 21eqtrd 2853 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2322ex 413 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2423ralimdva 3174 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
25 oveq2 7153 . . . . 5 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (0..^(♯‘𝐹)) = (0..^((♯‘𝑃) − 1)))
2625raleqdv 3413 . . . 4 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2726imbi2d 342 . . 3 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2824, 27syl5ibr 247 . 2 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
293, 28mpcom 38 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {cpr 4559   class class class wbr 5057  cmpt 5137  ccnv 5547  dom cdm 5548  ran crn 5549  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  cle 10664  cmin 10858  0cn0 11885  ..^cfzo 13021  chash 13678  Word cword 13849  iEdgciedg 26709  Edgcedg 26759  USPGraphcuspgr 26860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-edg 26760  df-uspgr 26862
This theorem is referenced by:  wlkiswwlks2lem6  27579
  Copyright terms: Public domain W3C validator