MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem4 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem4 27221
Description: Lemma 4 for wlkiswwlks2 27224. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥
Allowed substitution hints:   𝐸(𝑖)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem wlkiswwlks2lem4
StepHypRef Expression
1 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21wlkiswwlks2lem1 27218 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
323adant1 1121 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
4 lencl 13621 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
543ad2ant2 1125 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
61wlkiswwlks2lem2 27219 . . . . . . . . 9 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
75, 6sylan 575 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87adantr 474 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
98fveq2d 6450 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
10 wlkiswwlks2lem.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
1110uspgrf1oedg 26522 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1210rneqi 5597 . . . . . . . . . . . 12 ran 𝐸 = ran (iEdg‘𝐺)
13 edgval 26397 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
1412, 13eqtr4i 2805 . . . . . . . . . . 11 ran 𝐸 = (Edg‘𝐺)
15 f1oeq3 6382 . . . . . . . . . . 11 (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1711, 16sylibr 226 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
18173ad2ant1 1124 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1918adantr 474 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
20 f1ocnvfv2 6805 . . . . . . 7 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2119, 20sylan 575 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
229, 21eqtrd 2814 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2322ex 403 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2423ralimdva 3144 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
25 oveq2 6930 . . . . 5 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (0..^(♯‘𝐹)) = (0..^((♯‘𝑃) − 1)))
2625raleqdv 3340 . . . 4 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2726imbi2d 332 . . 3 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2824, 27syl5ibr 238 . 2 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
293, 28mpcom 38 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  {cpr 4400   class class class wbr 4886  cmpt 4965  ccnv 5354  dom cdm 5355  ran crn 5356  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  0cc0 10272  1c1 10273   + caddc 10275  cle 10412  cmin 10606  0cn0 11642  ..^cfzo 12784  chash 13435  Word cword 13599  iEdgciedg 26345  Edgcedg 26395  USPGraphcuspgr 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-edg 26396  df-uspgr 26499
This theorem is referenced by:  wlkiswwlks2lem6  27223
  Copyright terms: Public domain W3C validator