MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem4 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem4 29902
Description: Lemma 4 for wlkiswwlks2 29905. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥
Allowed substitution hints:   𝐸(𝑖)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem wlkiswwlks2lem4
StepHypRef Expression
1 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21wlkiswwlks2lem1 29899 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
323adant1 1129 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
4 lencl 14568 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
543ad2ant2 1133 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
61wlkiswwlks2lem2 29900 . . . . . . . . 9 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
75, 6sylan 580 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87adantr 480 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
98fveq2d 6911 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
10 wlkiswwlks2lem.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
1110uspgrf1oedg 29205 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1210rneqi 5951 . . . . . . . . . . . 12 ran 𝐸 = ran (iEdg‘𝐺)
13 edgval 29081 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
1412, 13eqtr4i 2766 . . . . . . . . . . 11 ran 𝐸 = (Edg‘𝐺)
15 f1oeq3 6839 . . . . . . . . . . 11 (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1711, 16sylibr 234 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
18173ad2ant1 1132 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1918adantr 480 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
20 f1ocnvfv2 7297 . . . . . . 7 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2119, 20sylan 580 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
229, 21eqtrd 2775 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2322ex 412 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2423ralimdva 3165 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
25 oveq2 7439 . . . . 5 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (0..^(♯‘𝐹)) = (0..^((♯‘𝑃) − 1)))
2625raleqdv 3324 . . . 4 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2726imbi2d 340 . . 3 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2824, 27imbitrrid 246 . 2 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
293, 28mpcom 38 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {cpr 4633   class class class wbr 5148  cmpt 5231  ccnv 5688  dom cdm 5689  ran crn 5690  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  cmin 11490  0cn0 12524  ..^cfzo 13691  chash 14366  Word cword 14549  iEdgciedg 29029  Edgcedg 29079  USPGraphcuspgr 29180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-edg 29080  df-uspgr 29182
This theorem is referenced by:  wlkiswwlks2lem6  29904
  Copyright terms: Public domain W3C validator