![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkiswwlks2lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for wlkiswwlks2 27361. (Contributed by Alexander van der Vekens, 20-Jul-2018.) |
Ref | Expression |
---|---|
wlkiswwlks2lem.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
Ref | Expression |
---|---|
wlkiswwlks2lem3 | ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkiswwlks2lem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) | |
2 | 1 | wlkiswwlks2lem1 27355 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
3 | wrdf 13677 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → 𝑃:(0..^(♯‘𝑃))⟶𝑉) | |
4 | lencl 13694 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0) | |
5 | nn0z 11818 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
6 | fzoval 12855 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℤ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((♯‘𝑃) ∈ ℕ0 → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1))) |
8 | oveq2 6984 | . . . . . . . . 9 ⊢ (((♯‘𝑃) − 1) = (♯‘𝐹) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝐹))) | |
9 | 8 | eqcoms 2787 | . . . . . . . 8 ⊢ ((♯‘𝐹) = ((♯‘𝑃) − 1) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝐹))) |
10 | 7, 9 | sylan9eq 2835 | . . . . . . 7 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝐹) = ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = (0...(♯‘𝐹))) |
11 | 10 | feq2d 6330 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝐹) = ((♯‘𝑃) − 1)) → (𝑃:(0..^(♯‘𝑃))⟶𝑉 ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
12 | 11 | biimpcd 241 | . . . . 5 ⊢ (𝑃:(0..^(♯‘𝑃))⟶𝑉 → (((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝐹) = ((♯‘𝑃) − 1)) → 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
13 | 12 | expd 408 | . . . 4 ⊢ (𝑃:(0..^(♯‘𝑃))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝐹) = ((♯‘𝑃) − 1) → 𝑃:(0...(♯‘𝐹))⟶𝑉))) |
14 | 3, 4, 13 | sylc 65 | . . 3 ⊢ (𝑃 ∈ Word 𝑉 → ((♯‘𝐹) = ((♯‘𝑃) − 1) → 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
15 | 14 | adantr 473 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((♯‘𝐹) = ((♯‘𝑃) − 1) → 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
16 | 2, 15 | mpd 15 | 1 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {cpr 4443 class class class wbr 4929 ↦ cmpt 5008 ◡ccnv 5406 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 0cc0 10335 1c1 10336 + caddc 10338 ≤ cle 10475 − cmin 10670 ℕ0cn0 11707 ℤcz 11793 ...cfz 12708 ..^cfzo 12849 ♯chash 13505 Word cword 13672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-hash 13506 df-word 13673 |
This theorem is referenced by: wlkiswwlks2lem6 27360 |
Copyright terms: Public domain | W3C validator |