Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkiswwlks2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for wlkiswwlks2 28181. (Contributed by Alexander van der Vekens, 20-Jul-2018.) |
Ref | Expression |
---|---|
wlkiswwlks2lem.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
Ref | Expression |
---|---|
wlkiswwlks2lem1 | ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 14180 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0) | |
2 | elnnnn0c 12224 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃))) | |
3 | 2 | biimpri 227 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
4 | 1, 3 | sylan 579 | . . 3 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
5 | nnm1nn0 12220 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ0) |
7 | fvex 6774 | . . 3 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ V | |
8 | wlkiswwlks2lem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) | |
9 | 7, 8 | fnmpti 6565 | . 2 ⊢ 𝐹 Fn (0..^((♯‘𝑃) − 1)) |
10 | ffzo0hash 14105 | . 2 ⊢ ((((♯‘𝑃) − 1) ∈ ℕ0 ∧ 𝐹 Fn (0..^((♯‘𝑃) − 1))) → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
11 | 6, 9, 10 | sylancl 585 | 1 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cpr 4565 class class class wbr 5075 ↦ cmpt 5158 ◡ccnv 5584 Fn wfn 6418 ‘cfv 6423 (class class class)co 7260 0cc0 10818 1c1 10819 + caddc 10821 ≤ cle 10957 − cmin 11151 ℕcn 11919 ℕ0cn0 12179 ..^cfzo 13327 ♯chash 13988 Word cword 14161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-card 9644 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-n0 12180 df-z 12266 df-uz 12528 df-fz 13185 df-fzo 13328 df-hash 13989 df-word 14162 |
This theorem is referenced by: wlkiswwlks2lem3 28177 wlkiswwlks2lem4 28178 |
Copyright terms: Public domain | W3C validator |