MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Visualization version   GIF version

Theorem gsum2d 18568
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2d (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2d
StepHypRef Expression
1 gsum2d.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d.z . . 3 0 = (0g𝐺)
3 gsum2d.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d.a . . 3 (𝜑𝐴𝑉)
5 gsum2d.r . . 3 (𝜑 → Rel 𝐴)
6 gsum2d.d . . 3 (𝜑𝐷𝑊)
7 gsum2d.s . . 3 (𝜑 → dom 𝐴𝐷)
8 gsum2d.f . . 3 (𝜑𝐹:𝐴𝐵)
9 gsum2d.w . . 3 (𝜑𝐹 finSupp 0 )
101, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem2 18567 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
11 suppssdm 7539 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
1211, 8fssdm 6269 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
13 relss 5405 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
1412, 5, 13sylc 65 . . . . . 6 (𝜑 → Rel (𝐹 supp 0 ))
15 relssdmrn 5867 . . . . . . 7 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )))
16 ssv 3819 . . . . . . . 8 ran (𝐹 supp 0 ) ⊆ V
17 xpss2 5327 . . . . . . . 8 (ran (𝐹 supp 0 ) ⊆ V → (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V))
1816, 17ax-mp 5 . . . . . . 7 (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V)
1915, 18syl6ss 3807 . . . . . 6 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2014, 19syl 17 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2112, 20ssind 4030 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ (dom (𝐹 supp 0 ) × V)))
22 df-res 5320 . . . 4 (𝐴 ↾ dom (𝐹 supp 0 )) = (𝐴 ∩ (dom (𝐹 supp 0 ) × V))
2321, 22syl6sseqr 3846 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ↾ dom (𝐹 supp 0 )))
241, 2, 3, 4, 8, 23, 9gsumres 18511 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
25 dmss 5521 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2612, 25syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2726, 7sstrd 3805 . . . . 5 (𝜑 → dom (𝐹 supp 0 ) ⊆ 𝐷)
2827resmptd 5654 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 )) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 6887 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
301, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem1 18566 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3130adantr 468 . . . . 5 ((𝜑𝑗𝐷) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3231fmpttd 6604 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))):𝐷𝐵)
33 vex 3393 . . . . . . . . . . . . . 14 𝑗 ∈ V
34 vex 3393 . . . . . . . . . . . . . 14 𝑘 ∈ V
3533, 34elimasn 5697 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3635biimpi 207 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3736ad2antll 711 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
38 eldifn 3929 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
3938ad2antrl 710 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
4033, 34opeldm 5526 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑗 ∈ dom (𝐹 supp 0 ))
4139, 40nsyl 137 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
4237, 41eldifd 3777 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
43 df-ov 6874 . . . . . . . . . . 11 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
44 ssidd 3818 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
452fvexi 6419 . . . . . . . . . . . . 13 0 ∈ V
4645a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
478, 44, 4, 46suppssr 7558 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
4843, 47syl5eq 2851 . . . . . . . . . 10 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
4942, 48syldan 581 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → (𝑗𝐹𝑘) = 0 )
5049anassrs 455 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) = 0 )
5150mpteq2dva 4934 . . . . . . 7 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 ))
5251oveq2d 6887 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )))
53 cmnmnd 18405 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
543, 53syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
55 imaexg 7330 . . . . . . . . 9 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
564, 55syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
572gsumz 17575 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝐴 “ {𝑗}) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5854, 56, 57syl2anc 575 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5958adantr 468 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
6052, 59eqtrd 2839 . . . . 5 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = 0 )
6160, 6suppss2 7561 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 ))
62 funmpt 6136 . . . . . 6 Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))
6362a1i 11 . . . . 5 (𝜑 → Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
649fsuppimpd 8518 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
65 dmfi 8480 . . . . . . 7 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6664, 65syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
67 ssfi 8416 . . . . . 6 ((dom (𝐹 supp 0 ) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 )) → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)
6866, 61, 67syl2anc 575 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)
69 mptexg 6706 . . . . . . 7 (𝐷𝑊 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V)
706, 69syl 17 . . . . . 6 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V)
71 isfsupp 8515 . . . . . 6 (((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V ∧ 0 ∈ V) → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7270, 46, 71syl2anc 575 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7363, 68, 72mpbir2and 695 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 )
741, 2, 3, 6, 32, 61, 73gsumres 18511 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7529, 74eqtr3d 2841 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7610, 24, 753eqtr3d 2847 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2158  Vcvv 3390  cdif 3763  cin 3765  wss 3766  {csn 4367  cop 4373   class class class wbr 4840  cmpt 4919   × cxp 5306  dom cdm 5308  ran crn 5309  cres 5310  cima 5311  Rel wrel 5313  Fun wfun 6092  wf 6094  cfv 6098  (class class class)co 6871   supp csupp 7526  Fincfn 8189   finSupp cfsupp 8511  Basecbs 16064  0gc0g 16301   Σg cgsu 16302  Mndcmnd 17495  CMndccmn 18390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-of 7124  df-om 7293  df-1st 7395  df-2nd 7396  df-supp 7527  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-oadd 7797  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-fsupp 8512  df-oi 8651  df-card 9045  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-nn 11303  df-2 11360  df-n0 11556  df-z 11640  df-uz 11901  df-fz 12546  df-fzo 12686  df-seq 13021  df-hash 13334  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16303  df-gsum 16304  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17947  df-cmn 18392
This theorem is referenced by:  gsum2d2  18570  gsumxp  18572
  Copyright terms: Public domain W3C validator