MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Visualization version   GIF version

Theorem gsum2d 19573
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2d (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2d
StepHypRef Expression
1 gsum2d.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d.z . . 3 0 = (0g𝐺)
3 gsum2d.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d.a . . 3 (𝜑𝐴𝑉)
5 gsum2d.r . . 3 (𝜑 → Rel 𝐴)
6 gsum2d.d . . 3 (𝜑𝐷𝑊)
7 gsum2d.s . . 3 (𝜑 → dom 𝐴𝐷)
8 gsum2d.f . . 3 (𝜑𝐹:𝐴𝐵)
9 gsum2d.w . . 3 (𝜑𝐹 finSupp 0 )
101, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem2 19572 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
11 suppssdm 7993 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
1211, 8fssdm 6620 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
13 relss 5692 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
1412, 5, 13sylc 65 . . . . . 6 (𝜑 → Rel (𝐹 supp 0 ))
15 relssdmrn 6172 . . . . . . 7 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )))
16 ssv 3945 . . . . . . . 8 ran (𝐹 supp 0 ) ⊆ V
17 xpss2 5609 . . . . . . . 8 (ran (𝐹 supp 0 ) ⊆ V → (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V))
1816, 17ax-mp 5 . . . . . . 7 (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V)
1915, 18sstrdi 3933 . . . . . 6 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2014, 19syl 17 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2112, 20ssind 4166 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ (dom (𝐹 supp 0 ) × V)))
22 df-res 5601 . . . 4 (𝐴 ↾ dom (𝐹 supp 0 )) = (𝐴 ∩ (dom (𝐹 supp 0 ) × V))
2321, 22sseqtrrdi 3972 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ↾ dom (𝐹 supp 0 )))
241, 2, 3, 4, 8, 23, 9gsumres 19514 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
25 dmss 5811 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2612, 25syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2726, 7sstrd 3931 . . . . 5 (𝜑 → dom (𝐹 supp 0 ) ⊆ 𝐷)
2827resmptd 5948 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 )) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 7291 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
301, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem1 19571 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3130adantr 481 . . . . 5 ((𝜑𝑗𝐷) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3231fmpttd 6989 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))):𝐷𝐵)
33 vex 3436 . . . . . . . . . . . . . 14 𝑗 ∈ V
34 vex 3436 . . . . . . . . . . . . . 14 𝑘 ∈ V
3533, 34elimasn 5997 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3635biimpi 215 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3736ad2antll 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
38 eldifn 4062 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
3938ad2antrl 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
4033, 34opeldm 5816 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑗 ∈ dom (𝐹 supp 0 ))
4139, 40nsyl 140 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
4237, 41eldifd 3898 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
43 df-ov 7278 . . . . . . . . . . 11 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
44 ssidd 3944 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
452fvexi 6788 . . . . . . . . . . . . 13 0 ∈ V
4645a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
478, 44, 4, 46suppssr 8012 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
4843, 47eqtrid 2790 . . . . . . . . . 10 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
4942, 48syldan 591 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → (𝑗𝐹𝑘) = 0 )
5049anassrs 468 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) = 0 )
5150mpteq2dva 5174 . . . . . . 7 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 ))
5251oveq2d 7291 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )))
53 cmnmnd 19402 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
543, 53syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
55 imaexg 7762 . . . . . . . . 9 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
564, 55syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
572gsumz 18474 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝐴 “ {𝑗}) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5854, 56, 57syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5958adantr 481 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
6052, 59eqtrd 2778 . . . . 5 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = 0 )
6160, 6suppss2 8016 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 ))
62 funmpt 6472 . . . . . 6 Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))
6362a1i 11 . . . . 5 (𝜑 → Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
649fsuppimpd 9135 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
65 dmfi 9097 . . . . . . 7 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6664, 65syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
6766, 61ssfid 9042 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)
686mptexd 7100 . . . . . 6 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V)
69 isfsupp 9132 . . . . . 6 (((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V ∧ 0 ∈ V) → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7068, 46, 69syl2anc 584 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7163, 67, 70mpbir2and 710 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 )
721, 2, 3, 6, 32, 61, 71gsumres 19514 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7329, 72eqtr3d 2780 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7410, 24, 733eqtr3d 2786 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cin 3886  wss 3887  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Rel wrel 5594  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388
This theorem is referenced by:  gsum2d2  19575  gsumxp  19577  gsumpart  31315
  Copyright terms: Public domain W3C validator