Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Visualization version   GIF version

Theorem gsum2d 19089
 Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2d (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2d
StepHypRef Expression
1 gsum2d.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d.z . . 3 0 = (0g𝐺)
3 gsum2d.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d.a . . 3 (𝜑𝐴𝑉)
5 gsum2d.r . . 3 (𝜑 → Rel 𝐴)
6 gsum2d.d . . 3 (𝜑𝐷𝑊)
7 gsum2d.s . . 3 (𝜑 → dom 𝐴𝐷)
8 gsum2d.f . . 3 (𝜑𝐹:𝐴𝐵)
9 gsum2d.w . . 3 (𝜑𝐹 finSupp 0 )
101, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem2 19088 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
11 suppssdm 7829 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
1211, 8fssdm 6505 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
13 relss 5621 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
1412, 5, 13sylc 65 . . . . . 6 (𝜑 → Rel (𝐹 supp 0 ))
15 relssdmrn 6089 . . . . . . 7 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )))
16 ssv 3939 . . . . . . . 8 ran (𝐹 supp 0 ) ⊆ V
17 xpss2 5540 . . . . . . . 8 (ran (𝐹 supp 0 ) ⊆ V → (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V))
1816, 17ax-mp 5 . . . . . . 7 (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V)
1915, 18sstrdi 3927 . . . . . 6 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2014, 19syl 17 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2112, 20ssind 4159 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ (dom (𝐹 supp 0 ) × V)))
22 df-res 5532 . . . 4 (𝐴 ↾ dom (𝐹 supp 0 )) = (𝐴 ∩ (dom (𝐹 supp 0 ) × V))
2321, 22sseqtrrdi 3966 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ↾ dom (𝐹 supp 0 )))
241, 2, 3, 4, 8, 23, 9gsumres 19030 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
25 dmss 5736 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2612, 25syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2726, 7sstrd 3925 . . . . 5 (𝜑 → dom (𝐹 supp 0 ) ⊆ 𝐷)
2827resmptd 5876 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 )) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 7152 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
301, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem1 19087 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3130adantr 484 . . . . 5 ((𝜑𝑗𝐷) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3231fmpttd 6857 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))):𝐷𝐵)
33 vex 3444 . . . . . . . . . . . . . 14 𝑗 ∈ V
34 vex 3444 . . . . . . . . . . . . . 14 𝑘 ∈ V
3533, 34elimasn 5922 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3635biimpi 219 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3736ad2antll 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
38 eldifn 4055 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
3938ad2antrl 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
4033, 34opeldm 5741 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑗 ∈ dom (𝐹 supp 0 ))
4139, 40nsyl 142 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
4237, 41eldifd 3892 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
43 df-ov 7139 . . . . . . . . . . 11 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
44 ssidd 3938 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
452fvexi 6660 . . . . . . . . . . . . 13 0 ∈ V
4645a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
478, 44, 4, 46suppssr 7847 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
4843, 47syl5eq 2845 . . . . . . . . . 10 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
4942, 48syldan 594 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → (𝑗𝐹𝑘) = 0 )
5049anassrs 471 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) = 0 )
5150mpteq2dva 5126 . . . . . . 7 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 ))
5251oveq2d 7152 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )))
53 cmnmnd 18918 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
543, 53syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
55 imaexg 7605 . . . . . . . . 9 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
564, 55syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
572gsumz 17995 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝐴 “ {𝑗}) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5854, 56, 57syl2anc 587 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5958adantr 484 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
6052, 59eqtrd 2833 . . . . 5 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = 0 )
6160, 6suppss2 7850 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 ))
62 funmpt 6363 . . . . . 6 Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))
6362a1i 11 . . . . 5 (𝜑 → Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
649fsuppimpd 8827 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
65 dmfi 8789 . . . . . . 7 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6664, 65syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
6766, 61ssfid 8728 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)
686mptexd 6965 . . . . . 6 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V)
69 isfsupp 8824 . . . . . 6 (((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V ∧ 0 ∈ V) → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7068, 46, 69syl2anc 587 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7163, 67, 70mpbir2and 712 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 )
721, 2, 3, 6, 32, 61, 71gsumres 19030 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7329, 72eqtr3d 2835 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7410, 24, 733eqtr3d 2841 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ∖ cdif 3878   ∩ cin 3880   ⊆ wss 3881  {csn 4525  ⟨cop 4531   class class class wbr 5031   ↦ cmpt 5111   × cxp 5518  dom cdm 5520  ran crn 5521   ↾ cres 5522   “ cima 5523  Rel wrel 5525  Fun wfun 6319  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   supp csupp 7816  Fincfn 8495   finSupp cfsupp 8820  Basecbs 16478  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  CMndccmn 18902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904 This theorem is referenced by:  gsum2d2  19091  gsumxp  19093  gsumpart  30750
 Copyright terms: Public domain W3C validator