MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Visualization version   GIF version

Theorem gsum2d 19092
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2d (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2d
StepHypRef Expression
1 gsum2d.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d.z . . 3 0 = (0g𝐺)
3 gsum2d.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d.a . . 3 (𝜑𝐴𝑉)
5 gsum2d.r . . 3 (𝜑 → Rel 𝐴)
6 gsum2d.d . . 3 (𝜑𝐷𝑊)
7 gsum2d.s . . 3 (𝜑 → dom 𝐴𝐷)
8 gsum2d.f . . 3 (𝜑𝐹:𝐴𝐵)
9 gsum2d.w . . 3 (𝜑𝐹 finSupp 0 )
101, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem2 19091 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
11 suppssdm 7843 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
1211, 8fssdm 6530 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
13 relss 5656 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 )))
1412, 5, 13sylc 65 . . . . . 6 (𝜑 → Rel (𝐹 supp 0 ))
15 relssdmrn 6121 . . . . . . 7 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )))
16 ssv 3991 . . . . . . . 8 ran (𝐹 supp 0 ) ⊆ V
17 xpss2 5575 . . . . . . . 8 (ran (𝐹 supp 0 ) ⊆ V → (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V))
1816, 17ax-mp 5 . . . . . . 7 (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) × V)
1915, 18sstrdi 3979 . . . . . 6 (Rel (𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2014, 19syl 17 . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × V))
2112, 20ssind 4209 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ (dom (𝐹 supp 0 ) × V)))
22 df-res 5567 . . . 4 (𝐴 ↾ dom (𝐹 supp 0 )) = (𝐴 ∩ (dom (𝐹 supp 0 ) × V))
2321, 22sseqtrrdi 4018 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ↾ dom (𝐹 supp 0 )))
241, 2, 3, 4, 8, 23, 9gsumres 19033 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
25 dmss 5771 . . . . . . 7 ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2612, 25syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴)
2726, 7sstrd 3977 . . . . 5 (𝜑 → dom (𝐹 supp 0 ) ⊆ 𝐷)
2827resmptd 5908 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 )) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 7172 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
301, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem1 19090 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3130adantr 483 . . . . 5 ((𝜑𝑗𝐷) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
3231fmpttd 6879 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))):𝐷𝐵)
33 vex 3497 . . . . . . . . . . . . . 14 𝑗 ∈ V
34 vex 3497 . . . . . . . . . . . . . 14 𝑘 ∈ V
3533, 34elimasn 5954 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3635biimpi 218 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
3736ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
38 eldifn 4104 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
3938ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 𝑗 ∈ dom (𝐹 supp 0 ))
4033, 34opeldm 5776 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑗 ∈ dom (𝐹 supp 0 ))
4139, 40nsyl 142 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
4237, 41eldifd 3947 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
43 df-ov 7159 . . . . . . . . . . 11 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
44 ssidd 3990 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
452fvexi 6684 . . . . . . . . . . . . 13 0 ∈ V
4645a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
478, 44, 4, 46suppssr 7861 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
4843, 47syl5eq 2868 . . . . . . . . . 10 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
4942, 48syldan 593 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → (𝑗𝐹𝑘) = 0 )
5049anassrs 470 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) = 0 )
5150mpteq2dva 5161 . . . . . . 7 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 ))
5251oveq2d 7172 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )))
53 cmnmnd 18922 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
543, 53syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
55 imaexg 7620 . . . . . . . . 9 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
564, 55syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
572gsumz 18000 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝐴 “ {𝑗}) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5854, 56, 57syl2anc 586 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
5958adantr 483 . . . . . 6 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 )
6052, 59eqtrd 2856 . . . . 5 ((𝜑𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = 0 )
6160, 6suppss2 7864 . . . 4 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 ))
62 funmpt 6393 . . . . . 6 Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))
6362a1i 11 . . . . 5 (𝜑 → Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
649fsuppimpd 8840 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
65 dmfi 8802 . . . . . . 7 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
6664, 65syl 17 . . . . . 6 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
6766, 61ssfid 8741 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)
686mptexd 6987 . . . . . 6 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V)
69 isfsupp 8837 . . . . . 6 (((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V ∧ 0 ∈ V) → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7068, 46, 69syl2anc 586 . . . . 5 (𝜑 → ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈ Fin)))
7163, 67, 70mpbir2and 711 . . . 4 (𝜑 → (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 )
721, 2, 3, 6, 32, 61, 71gsumres 19033 . . 3 (𝜑 → (𝐺 Σg ((𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7329, 72eqtr3d 2858 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
7410, 24, 733eqtr3d 2864 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cdif 3933  cin 3935  wss 3936  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  Rel wrel 5560  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156   supp csupp 7830  Fincfn 8509   finSupp cfsupp 8833  Basecbs 16483  0gc0g 16713   Σg cgsu 16714  Mndcmnd 17911  CMndccmn 18906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908
This theorem is referenced by:  gsum2d2  19094  gsumxp  19096
  Copyright terms: Public domain W3C validator