Proof of Theorem gsum2d
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gsum2d.b | . . 3
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |  | gsum2d.z | . . 3
⊢  0 =
(0g‘𝐺) | 
| 3 |  | gsum2d.g | . . 3
⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| 4 |  | gsum2d.a | . . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 5 |  | gsum2d.r | . . 3
⊢ (𝜑 → Rel 𝐴) | 
| 6 |  | gsum2d.d | . . 3
⊢ (𝜑 → 𝐷 ∈ 𝑊) | 
| 7 |  | gsum2d.s | . . 3
⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) | 
| 8 |  | gsum2d.f | . . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 9 |  | gsum2d.w | . . 3
⊢ (𝜑 → 𝐹 finSupp 0 ) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | gsum2dlem2 19990 | . 2
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | 
| 11 |  | suppssdm 8203 | . . . . . 6
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 | 
| 12 | 11, 8 | fssdm 6754 | . . . . 5
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴) | 
| 13 |  | relss 5790 | . . . . . . 7
⊢ ((𝐹 supp 0 ) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐹 supp 0 ))) | 
| 14 | 12, 5, 13 | sylc 65 | . . . . . 6
⊢ (𝜑 → Rel (𝐹 supp 0 )) | 
| 15 |  | relssdmrn 6287 | . . . . . . 7
⊢ (Rel
(𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) × ran (𝐹 supp 0 ))) | 
| 16 |  | ssv 4007 | . . . . . . . 8
⊢ ran
(𝐹 supp 0 ) ⊆
V | 
| 17 |  | xpss2 5704 | . . . . . . . 8
⊢ (ran
(𝐹 supp 0 ) ⊆ V → (dom
(𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) ×
V)) | 
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7
⊢ (dom
(𝐹 supp 0 ) × ran (𝐹 supp 0 )) ⊆ (dom (𝐹 supp 0 ) ×
V) | 
| 19 | 15, 18 | sstrdi 3995 | . . . . . 6
⊢ (Rel
(𝐹 supp 0 ) → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) ×
V)) | 
| 20 | 14, 19 | syl 17 | . . . . 5
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (dom (𝐹 supp 0 ) ×
V)) | 
| 21 | 12, 20 | ssind 4240 | . . . 4
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ (dom (𝐹 supp 0 ) ×
V))) | 
| 22 |  | df-res 5696 | . . . 4
⊢ (𝐴 ↾ dom (𝐹 supp 0 )) = (𝐴 ∩ (dom (𝐹 supp 0 ) ×
V)) | 
| 23 | 21, 22 | sseqtrrdi 4024 | . . 3
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ↾ dom (𝐹 supp 0 ))) | 
| 24 | 1, 2, 3, 4, 8, 23,
9 | gsumres 19932 | . 2
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg 𝐹)) | 
| 25 |  | dmss 5912 | . . . . . . 7
⊢ ((𝐹 supp 0 ) ⊆ 𝐴 → dom (𝐹 supp 0 ) ⊆ dom 𝐴) | 
| 26 | 12, 25 | syl 17 | . . . . . 6
⊢ (𝜑 → dom (𝐹 supp 0 ) ⊆ dom 𝐴) | 
| 27 | 26, 7 | sstrd 3993 | . . . . 5
⊢ (𝜑 → dom (𝐹 supp 0 ) ⊆ 𝐷) | 
| 28 | 27 | resmptd 6057 | . . . 4
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 )) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) | 
| 29 | 28 | oveq2d 7448 | . . 3
⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | 
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | gsum2dlem1 19989 | . . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) | 
| 31 | 30 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐷) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) | 
| 32 | 31 | fmpttd 7134 | . . . 4
⊢ (𝜑 → (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))):𝐷⟶𝐵) | 
| 33 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑗 ∈ V | 
| 34 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V | 
| 35 | 33, 34 | elimasn 6107 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ 〈𝑗, 𝑘〉 ∈ 𝐴) | 
| 36 | 35 | biimpi 216 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → 〈𝑗, 𝑘〉 ∈ 𝐴) | 
| 37 | 36 | ad2antll 729 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → 〈𝑗, 𝑘〉 ∈ 𝐴) | 
| 38 |  | eldifn 4131 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) → ¬ 𝑗 ∈ dom (𝐹 supp 0 )) | 
| 39 | 38 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 𝑗 ∈ dom (𝐹 supp 0 )) | 
| 40 | 33, 34 | opeldm 5917 | . . . . . . . . . . . 12
⊢
(〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → 𝑗 ∈ dom (𝐹 supp 0 )) | 
| 41 | 39, 40 | nsyl 140 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | 
| 42 | 37, 41 | eldifd 3961 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) | 
| 43 |  | df-ov 7435 | . . . . . . . . . . 11
⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | 
| 44 |  | ssidd 4006 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | 
| 45 | 2 | fvexi 6919 | . . . . . . . . . . . . 13
⊢  0 ∈
V | 
| 46 | 45 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ V) | 
| 47 | 8, 44, 4, 46 | suppssr 8221 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) | 
| 48 | 43, 47 | eqtrid 2788 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) | 
| 49 | 42, 48 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 )) ∧ 𝑘 ∈ (𝐴 “ {𝑗}))) → (𝑗𝐹𝑘) = 0 ) | 
| 50 | 49 | anassrs 467 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) = 0 ) | 
| 51 | 50 | mpteq2dva 5241 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) | 
| 52 | 51 | oveq2d 7448 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 ))) | 
| 53 |  | cmnmnd 19816 | . . . . . . . . 9
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | 
| 54 | 3, 53 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 55 |  | imaexg 7936 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) | 
| 56 | 4, 55 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) | 
| 57 | 2 | gsumz 18850 | . . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝐴 “ {𝑗}) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 ) | 
| 58 | 54, 56, 57 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 ) | 
| 59 | 58 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ 0 )) = 0 ) | 
| 60 | 52, 59 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐷 ∖ dom (𝐹 supp 0 ))) → (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = 0 ) | 
| 61 | 60, 6 | suppss2 8226 | . . . 4
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ⊆ dom (𝐹 supp 0 )) | 
| 62 |  | funmpt 6603 | . . . . . 6
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) | 
| 63 | 62 | a1i 11 | . . . . 5
⊢ (𝜑 → Fun (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) | 
| 64 | 9 | fsuppimpd 9410 | . . . . . . 7
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) | 
| 65 |  | dmfi 9376 | . . . . . . 7
⊢ ((𝐹 supp 0 ) ∈ Fin → dom
(𝐹 supp 0 ) ∈
Fin) | 
| 66 | 64, 65 | syl 17 | . . . . . 6
⊢ (𝜑 → dom (𝐹 supp 0 ) ∈
Fin) | 
| 67 | 66, 61 | ssfid 9302 | . . . . 5
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈
Fin) | 
| 68 | 6 | mptexd 7245 | . . . . . 6
⊢ (𝜑 → (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V) | 
| 69 |  | isfsupp 9406 | . . . . . 6
⊢ (((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∈ V ∧ 0 ∈ V) → ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈
Fin))) | 
| 70 | 68, 46, 69 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ↔ (Fun (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ∧ ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) supp 0 ) ∈
Fin))) | 
| 71 | 63, 67, 70 | mpbir2and 713 | . . . 4
⊢ (𝜑 → (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) finSupp 0 ) | 
| 72 | 1, 2, 3, 6, 32, 61, 71 | gsumres 19932 | . . 3
⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) ↾ dom (𝐹 supp 0 ))) = (𝐺 Σg (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | 
| 73 | 29, 72 | eqtr3d 2778 | . 2
⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | 
| 74 | 10, 24, 73 | 3eqtr3d 2784 | 1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |