MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom3 Structured version   Visualization version   GIF version

Theorem xpdom3 9039
Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdom3 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))

Proof of Theorem xpdom3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
2 xpsneng 9026 . . . . . . . 8 ((𝐴𝑉𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
323adant2 1131 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
43ensymd 8976 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴 × {𝑥}))
5 xpexg 7726 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
653adant3 1132 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × 𝐵) ∈ V)
7 simp3 1138 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
87snssd 4773 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
9 xpss2 5658 . . . . . . . 8 ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
108, 9syl 17 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
11 ssdomg 8971 . . . . . . 7 ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)))
126, 10, 11sylc 65 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))
13 endomtr 8983 . . . . . 6 ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵))
144, 12, 13syl2anc 584 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
15143expia 1121 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
1615exlimdv 1933 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
171, 16biimtrid 242 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 × 𝐵)))
18173impia 1117 1 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296  {csn 4589   class class class wbr 5107   × cxp 5636  cen 8915  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-er 8671  df-en 8919  df-dom 8920
This theorem is referenced by:  mapdom2  9112  xpfir  9211  infxpabs  10164
  Copyright terms: Public domain W3C validator