MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom3 Structured version   Visualization version   GIF version

Theorem xpdom3 8810
Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdom3 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))

Proof of Theorem xpdom3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
2 xpsneng 8797 . . . . . . . 8 ((𝐴𝑉𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
323adant2 1129 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
43ensymd 8746 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴 × {𝑥}))
5 xpexg 7578 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
653adant3 1130 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × 𝐵) ∈ V)
7 simp3 1136 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
87snssd 4739 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
9 xpss2 5600 . . . . . . . 8 ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
108, 9syl 17 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
11 ssdomg 8741 . . . . . . 7 ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)))
126, 10, 11sylc 65 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))
13 endomtr 8753 . . . . . 6 ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵))
144, 12, 13syl2anc 583 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
15143expia 1119 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
1615exlimdv 1937 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
171, 16syl5bi 241 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 × 𝐵)))
18173impia 1115 1 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wex 1783  wcel 2108  wne 2942  Vcvv 3422  wss 3883  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  cen 8688  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-er 8456  df-en 8692  df-dom 8693
This theorem is referenced by:  mapdom2  8884  xpfir  8970  infxpabs  9899
  Copyright terms: Public domain W3C validator