MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom3 Structured version   Visualization version   GIF version

Theorem xpdom3 8999
Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdom3 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))

Proof of Theorem xpdom3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
2 xpsneng 8986 . . . . . . . 8 ((𝐴𝑉𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
323adant2 1131 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≈ 𝐴)
43ensymd 8938 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴 × {𝑥}))
5 xpexg 7692 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
653adant3 1132 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × 𝐵) ∈ V)
7 simp3 1138 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
87snssd 4762 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
9 xpss2 5641 . . . . . . . 8 ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
108, 9syl 17 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵))
11 ssdomg 8933 . . . . . . 7 ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)))
126, 10, 11sylc 65 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))
13 endomtr 8945 . . . . . 6 ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵))
144, 12, 13syl2anc 584 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
15143expia 1121 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
1615exlimdv 1934 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴 × 𝐵)))
171, 16biimtrid 242 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 × 𝐵)))
18173impia 1117 1 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1780  wcel 2113  wne 2929  Vcvv 3437  wss 3898  c0 4282  {csn 4577   class class class wbr 5095   × cxp 5619  cen 8876  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-er 8631  df-en 8880  df-dom 8881
This theorem is referenced by:  mapdom2  9072  xpfir  9163  infxpabs  10113
  Copyright terms: Public domain W3C validator