| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdom3 | Structured version Visualization version GIF version | ||
| Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpdom3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4298 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
| 2 | xpsneng 8970 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ≈ 𝐴) | |
| 3 | 2 | 3adant2 1131 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ≈ 𝐴) |
| 4 | 3 | ensymd 8922 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≈ (𝐴 × {𝑥})) |
| 5 | xpexg 7678 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 6 | 5 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × 𝐵) ∈ V) |
| 7 | simp3 1138 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 8 | 7 | snssd 4756 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
| 9 | xpss2 5631 | . . . . . . . 8 ⊢ ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵)) |
| 11 | ssdomg 8917 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))) | |
| 12 | 6, 10, 11 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) |
| 13 | endomtr 8929 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵)) | |
| 14 | 4, 12, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 × 𝐵)) |
| 15 | 14 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 × 𝐵))) |
| 16 | 15 | exlimdv 1934 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 × 𝐵))) |
| 17 | 1, 16 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 × 𝐵))) |
| 18 | 17 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 {csn 4571 class class class wbr 5086 × cxp 5609 ≈ cen 8861 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-er 8617 df-en 8865 df-dom 8866 |
| This theorem is referenced by: mapdom2 9056 xpfir 9147 infxpabs 10097 |
| Copyright terms: Public domain | W3C validator |