![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdom3 | Structured version Visualization version GIF version |
Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of [Suppes] p. 98. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xpdom3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4347 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
2 | xpsneng 9060 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ≈ 𝐴) | |
3 | 2 | 3adant2 1129 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ≈ 𝐴) |
4 | 3 | ensymd 9005 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≈ (𝐴 × {𝑥})) |
5 | xpexg 7741 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
6 | 5 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × 𝐵) ∈ V) |
7 | simp3 1136 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
8 | 7 | snssd 4813 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
9 | xpss2 5697 | . . . . . . . 8 ⊢ ({𝑥} ⊆ 𝐵 → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵)) |
11 | ssdomg 9000 | . . . . . . 7 ⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × {𝑥}) ⊆ (𝐴 × 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵))) | |
12 | 6, 10, 11 | sylc 65 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) |
13 | endomtr 9012 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 × {𝑥}) ∧ (𝐴 × {𝑥}) ≼ (𝐴 × 𝐵)) → 𝐴 ≼ (𝐴 × 𝐵)) | |
14 | 4, 12, 13 | syl2anc 582 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 × 𝐵)) |
15 | 14 | 3expia 1119 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 × 𝐵))) |
16 | 15 | exlimdv 1934 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 × 𝐵))) |
17 | 1, 16 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 × 𝐵))) |
18 | 17 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ⊆ wss 3949 ∅c0 4323 {csn 4629 class class class wbr 5149 × cxp 5675 ≈ cen 8940 ≼ cdom 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-er 8707 df-en 8944 df-dom 8945 |
This theorem is referenced by: mapdom2 9152 xpfir 9270 infxpabs 10211 |
Copyright terms: Public domain | W3C validator |