| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zeroo2 | Structured version Visualization version GIF version | ||
| Description: A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| initoo2.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| zeroo2 | ⊢ (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeroorcl 17960 | . . 3 ⊢ (𝑂 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat) | |
| 2 | iszeroi 17977 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) | |
| 3 | 2 | simpld 494 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) |
| 4 | 1, 3 | mpancom 688 | . 2 ⊢ (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ (Base‘𝐶)) |
| 5 | initoo2.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 4, 5 | eleqtrrdi 2840 | 1 ⊢ (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 Basecbs 17185 Catccat 17631 InitOcinito 17949 TermOctermo 17950 ZeroOczeroo 17951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-inito 17952 df-zeroo 17954 |
| This theorem is referenced by: oppczeroo 49208 |
| Copyright terms: Public domain | W3C validator |