Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termoo2 Structured version   Visualization version   GIF version

Theorem termoo2 48984
Description: A terminal object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypothesis
Ref Expression
initoo2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
termoo2 (𝑂 ∈ (TermO‘𝐶) → 𝑂𝐵)

Proof of Theorem termoo2
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoo2.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2734 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 termorcl 18008 . . . 4 (𝑂 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat)
41, 2, 3istermoi 18017 . . 3 ((𝑂 ∈ (TermO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑏(Hom ‘𝐶)𝑂)))
54anidms 566 . 2 (𝑂 ∈ (TermO‘𝐶) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑏(Hom ‘𝐶)𝑂)))
65simpld 494 1 (𝑂 ∈ (TermO‘𝐶) → 𝑂𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ∃!weu 2566  wral 3050  cfv 6541  (class class class)co 7413  Basecbs 17230  Hom chom 17285  TermOctermo 17999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-termo 18002
This theorem is referenced by:  oppcinito  48986  termcterm2  49212
  Copyright terms: Public domain W3C validator