New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcex | GIF version |
Description: The cardinal sum of two sets is a set. (Contributed by SF, 25-Jan-2015.) |
Ref | Expression |
---|---|
addcex.1 | ⊢ A ∈ V |
addcex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
addcex | ⊢ (A +c B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcex.1 | . 2 ⊢ A ∈ V | |
2 | addcex.2 | . 2 ⊢ B ∈ V | |
3 | addcexg 4394 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A +c B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A +c B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-addc 4379 |
This theorem is referenced by: peano2 4404 findsd 4411 nnsucelrlem1 4425 preaddccan2lem1 4455 ltfinex 4465 evenodddisjlem1 4516 sfinltfin 4536 vfin1cltv 4548 phi11lem1 4596 addcfn 5826 braddcfn 5827 dfnnc3 5886 nnltp1clem1 6262 addccan2nclem2 6265 nncdiv3lem1 6276 nncdiv3lem2 6277 nnc3n3p1 6279 nchoicelem16 6305 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |