New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enprmap | GIF version |
Description: A mapping from a two element pair onto a set is equinumerous with the power class of the set. Theorem XI.1.28 of [Rosser] p. 360. (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
enprmap.1 | ⊢ B ∈ V |
Ref | Expression |
---|---|
enprmap | ⊢ ((x ≠ y ∧ A = {x, y}) → (A ↑m B) ≈ ℘B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . . . 5 ⊢ (r ∈ (A ↑m B) ↦ (◡r “ {x})) = (r ∈ (A ↑m B) ↦ (◡r “ {x})) | |
2 | 1 | enprmaplem2 6077 | . . . 4 ⊢ (r ∈ (A ↑m B) ↦ (◡r “ {x})) Fn (A ↑m B) |
3 | 2 | a1i 10 | . . 3 ⊢ ((x ≠ y ∧ A = {x, y}) → (r ∈ (A ↑m B) ↦ (◡r “ {x})) Fn (A ↑m B)) |
4 | 1 | enprmaplem3 6078 | . . 3 ⊢ ((x ≠ y ∧ A = {x, y}) → Fun ◡(r ∈ (A ↑m B) ↦ (◡r “ {x}))) |
5 | enprmap.1 | . . . 4 ⊢ B ∈ V | |
6 | 1, 5 | enprmaplem6 6081 | . . 3 ⊢ ((x ≠ y ∧ A = {x, y}) → ran (r ∈ (A ↑m B) ↦ (◡r “ {x})) = ℘B) |
7 | dff1o2 5291 | . . 3 ⊢ ((r ∈ (A ↑m B) ↦ (◡r “ {x})):(A ↑m B)–1-1-onto→℘B ↔ ((r ∈ (A ↑m B) ↦ (◡r “ {x})) Fn (A ↑m B) ∧ Fun ◡(r ∈ (A ↑m B) ↦ (◡r “ {x})) ∧ ran (r ∈ (A ↑m B) ↦ (◡r “ {x})) = ℘B)) | |
8 | 3, 4, 6, 7 | syl3anbrc 1136 | . 2 ⊢ ((x ≠ y ∧ A = {x, y}) → (r ∈ (A ↑m B) ↦ (◡r “ {x})):(A ↑m B)–1-1-onto→℘B) |
9 | 1 | enprmaplem1 6076 | . . 3 ⊢ (r ∈ (A ↑m B) ↦ (◡r “ {x})) ∈ V |
10 | 9 | f1oen 6033 | . 2 ⊢ ((r ∈ (A ↑m B) ↦ (◡r “ {x})):(A ↑m B)–1-1-onto→℘B → (A ↑m B) ≈ ℘B) |
11 | 8, 10 | syl 15 | 1 ⊢ ((x ≠ y ∧ A = {x, y}) → (A ↑m B) ≈ ℘B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 Vcvv 2859 ℘cpw 3722 {csn 3737 {cpr 3738 class class class wbr 4639 “ cima 4722 ◡ccnv 4771 ran crn 4773 Fun wfun 4775 Fn wfn 4776 –1-1-onto→wf1o 4780 (class class class)co 5525 ↦ cmpt 5651 ↑m cmap 5999 ≈ cen 6028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-map 6001 df-en 6029 |
This theorem is referenced by: enprmapc 6083 |
Copyright terms: Public domain | W3C validator |