MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsmod Structured version   Visualization version   GIF version

Theorem bitsmod 15352
Description: Truncating the bit sequence after some 𝑀 is equivalent to reducing the argument mod 2↑𝑀. (Contributed by Mario Carneiro, 6-Sep-2016.)
Assertion
Ref Expression
bitsmod ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀)))

Proof of Theorem bitsmod
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
2 2nn 11369 . . . . . . . . . 10 2 ∈ ℕ
32a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 479 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
53, 4nnexpcld 13216 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ)
61, 5zmodcld 12877 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℕ0)
76nn0zd 11664 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℤ)
87biantrurd 530 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))))
91ad2antrr 764 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℤ)
10 simplr 809 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0)
11 bitsval2 15341 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑥)))))
129, 10, 11syl2anc 696 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑥)))))
13 simpr 479 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 < 𝑀)
1413biantrud 529 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 ∈ (bits‘𝑁) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)))
15 2z 11593 . . . . . . . . . . . . 13 2 ∈ ℤ
1615a1i 11 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℤ)
179zred 11666 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℝ)
182a1i 11 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℕ)
1918, 10nnexpcld 13216 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℕ)
2017, 19nndivred 11253 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 / (2↑𝑥)) ∈ ℝ)
2120flcld 12785 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) ∈ ℤ)
227ad2antrr 764 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℤ)
2322zred 11666 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℝ)
2423, 19nndivred 11253 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ)
2524flcld 12785 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℤ)
26 2cnd 11277 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℂ)
2726, 10expp1d 13195 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑(𝑥 + 1)) = ((2↑𝑥) · 2))
28 1nn0 11492 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 1 ∈ ℕ0)
3010, 29nn0addcld 11539 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ∈ ℕ0)
3130nn0zd 11664 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ∈ ℤ)
32 simplr 809 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3332adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℕ0)
3433nn0zd 11664 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℤ)
35 nn0ltp1le 11619 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
3610, 33, 35syl2anc 696 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
3713, 36mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ≤ 𝑀)
38 eluz2 11877 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (ℤ‘(𝑥 + 1)) ↔ ((𝑥 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑥 + 1) ≤ 𝑀))
3931, 34, 37, 38syl3anbrc 1426 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ (ℤ‘(𝑥 + 1)))
40 dvdsexp 15243 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ (𝑥 + 1) ∈ ℕ0𝑀 ∈ (ℤ‘(𝑥 + 1))) → (2↑(𝑥 + 1)) ∥ (2↑𝑀))
4116, 30, 39, 40syl3anc 1473 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑(𝑥 + 1)) ∥ (2↑𝑀))
4227, 41eqbrtrrd 4820 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ (2↑𝑀))
435ad2antrr 764 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℕ)
4443nnrpd 12055 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ+)
45 moddifz 12868 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
4617, 44, 45syl2anc 696 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
4743nnzd 11665 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℤ)
48 2ne0 11297 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ≠ 0)
5026, 49, 34expne0d 13200 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ≠ 0)
519, 22zsubcld 11671 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ)
52 dvdsval2 15177 . . . . . . . . . . . . . . . . . 18 (((2↑𝑀) ∈ ℤ ∧ (2↑𝑀) ≠ 0 ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → ((2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ))
5347, 50, 51, 52syl3anc 1473 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ))
5446, 53mpbird 247 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))))
5519nnzd 11665 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℤ)
5655, 16zmulcld 11672 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∈ ℤ)
57 dvdstr 15212 . . . . . . . . . . . . . . . . 17 ((((2↑𝑥) · 2) ∈ ℤ ∧ (2↑𝑀) ∈ ℤ ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → ((((2↑𝑥) · 2) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
5856, 47, 51, 57syl3anc 1473 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((((2↑𝑥) · 2) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
5942, 54, 58mp2and 717 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀))))
6051zcnd 11667 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℂ)
6119nncnd 11220 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℂ)
6210nn0zd 11664 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℤ)
6326, 49, 62expne0d 13200 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ≠ 0)
6460, 61, 63divcan2d 10987 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) = (𝑁 − (𝑁 mod (2↑𝑀))))
6559, 64breqtrrd 4824 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
6610nn0red 11536 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ)
6733nn0red 11536 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℝ)
6866, 67, 13ltled 10369 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥𝑀)
69 eluz2 11877 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥𝑀))
7062, 34, 68, 69syl3anbrc 1426 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ (ℤ𝑥))
71 dvdsexp 15243 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑥 ∈ ℕ0𝑀 ∈ (ℤ𝑥)) → (2↑𝑥) ∥ (2↑𝑀))
7216, 10, 70, 71syl3anc 1473 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∥ (2↑𝑀))
73 dvdstr 15212 . . . . . . . . . . . . . . . . . 18 (((2↑𝑥) ∈ ℤ ∧ (2↑𝑀) ∈ ℤ ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → (((2↑𝑥) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
7455, 47, 51, 73syl3anc 1473 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((2↑𝑥) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
7572, 54, 74mp2and 717 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))))
76 dvdsval2 15177 . . . . . . . . . . . . . . . . 17 (((2↑𝑥) ∈ ℤ ∧ (2↑𝑥) ≠ 0 ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → ((2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ))
7755, 63, 51, 76syl3anc 1473 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ))
7875, 77mpbid 222 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ)
79 dvdscmulr 15204 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ ∧ ((2↑𝑥) ∈ ℤ ∧ (2↑𝑥) ≠ 0)) → (((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) ↔ 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8016, 78, 55, 63, 79syl112anc 1477 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) ↔ 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8165, 80mpbid 222 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))
8222zcnd 11667 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
839zcnd 11667 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℂ)
8482, 83pncan3d 10579 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) = 𝑁)
8584oveq1d 6820 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) / (2↑𝑥)) = (𝑁 / (2↑𝑥)))
8682, 60, 61, 63divdird 11023 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) / (2↑𝑥)) = (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8785, 86eqtr3d 2788 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 / (2↑𝑥)) = (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8887fveq2d 6348 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) = (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))))
89 fladdz 12812 . . . . . . . . . . . . . . . . 17 ((((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ) → (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9024, 78, 89syl2anc 696 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9188, 90eqtrd 2786 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9291oveq1d 6820 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) = (((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
9325zcnd 11667 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℂ)
9478zcnd 11667 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℂ)
9593, 94pncan2d 10578 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) = ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))
9692, 95eqtrd 2786 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) = ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))
9781, 96breqtrrd 4824 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∥ ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
98 dvdssub2 15217 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑥))) ∈ ℤ ∧ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℤ) ∧ 2 ∥ ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) → (2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
9916, 21, 25, 97, 98syl31anc 1476 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
10099notbid 307 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
10112, 14, 1003bitr3d 298 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
102 dvds0 15191 . . . . . . . . . . . . 13 (2 ∈ ℤ → 2 ∥ 0)
10315, 102ax-mp 5 . . . . . . . . . . . 12 2 ∥ 0
1041ad2antrr 764 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℤ)
105104zred 11666 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℝ)
106 2rp 12022 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
107106a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∈ ℝ+)
10832nn0zd 11664 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑀 ∈ ℤ)
109108adantr 472 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℤ)
110107, 109rpexpcld 13218 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ+)
111105, 110modcld 12860 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℝ)
112 simplr 809 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0)
113112nn0zd 11664 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℤ)
114107, 113rpexpcld 13218 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℝ+)
1156ad2antrr 764 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℕ0)
116115nn0ge0d 11538 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 0 ≤ (𝑁 mod (2↑𝑀)))
117111, 114, 116divge0d 12097 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)))
118110rpred 12057 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ)
119114rpred 12057 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℝ)
120 modlt 12865 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
121105, 110, 120syl2anc 696 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
122107rpred 12057 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∈ ℝ)
123 1le2 11425 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
124123a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 1 ≤ 2)
125 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ¬ 𝑥 < 𝑀)
126109zred 11666 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℝ)
127112nn0red 11536 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℝ)
128126, 127lenltd 10367 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
129125, 128mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀𝑥)
130 eluz2 11877 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
131109, 113, 129, 130syl3anbrc 1426 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ (ℤ𝑀))
132122, 124, 131leexp2ad 13227 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ≤ (2↑𝑥))
133111, 118, 119, 121, 132ltletrd 10381 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < (2↑𝑥))
134114rpcnd 12059 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℂ)
135134mulid1d 10241 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((2↑𝑥) · 1) = (2↑𝑥))
136133, 135breqtrrd 4824 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < ((2↑𝑥) · 1))
137 1red 10239 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 1 ∈ ℝ)
138111, 137, 114ltdivmuld 12108 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < 1 ↔ (𝑁 mod (2↑𝑀)) < ((2↑𝑥) · 1)))
139136, 138mpbird 247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < 1)
140 1e0p1 11736 . . . . . . . . . . . . . 14 1 = (0 + 1)
141139, 140syl6breq 4837 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1))
142111, 114rerpdivcld 12088 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ)
143 0z 11572 . . . . . . . . . . . . . 14 0 ∈ ℤ
144 flbi 12803 . . . . . . . . . . . . . 14 ((((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0 ↔ (0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∧ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1))))
145142, 143, 144sylancl 697 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0 ↔ (0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∧ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1))))
146117, 141, 145mpbir2and 995 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0)
147103, 146syl5breqr 4834 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))
148125intnand 1000 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ¬ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))
149147, 1482thd 255 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ ¬ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)))
150149con2bid 343 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
151101, 150pm2.61dan 867 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
152108biantrurd 530 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))))
153151, 152bitr3d 270 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ (𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))))
154 an12 873 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))
155153, 154syl6bb 276 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
156155pm5.32da 676 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))))
1578, 156bitr3d 270 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))))
158 3anass 1081 . . . 4 (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))))
159 elfzo2 12659 . . . . . . 7 (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))
160 elnn0uz 11910 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ (ℤ‘0))
1611603anbi1i 1160 . . . . . . 7 ((𝑥 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑥 < 𝑀) ↔ (𝑥 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))
162 3anass 1081 . . . . . . 7 ((𝑥 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑥 < 𝑀) ↔ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))
163159, 161, 1623bitr2i 288 . . . . . 6 (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))
164163anbi2i 732 . . . . 5 ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
165 an12 873 . . . . 5 ((𝑥 ∈ (bits‘𝑁) ∧ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
166164, 165bitri 264 . . . 4 ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
167157, 158, 1663bitr4g 303 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀))))
168 bitsval 15340 . . 3 (𝑥 ∈ (bits‘(𝑁 mod (2↑𝑀))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
169 elin 3931 . . 3 (𝑥 ∈ ((bits‘𝑁) ∩ (0..^𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)))
170167, 168, 1693bitr4g 303 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑥 ∈ (bits‘(𝑁 mod (2↑𝑀))) ↔ 𝑥 ∈ ((bits‘𝑁) ∩ (0..^𝑀))))
171170eqrdv 2750 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  cin 3706   class class class wbr 4796  cfv 6041  (class class class)co 6805  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125   < clt 10258  cle 10259  cmin 10450   / cdiv 10868  cn 11204  2c2 11254  0cn0 11476  cz 11561  cuz 11871  +crp 12017  ..^cfzo 12651  cfl 12777   mod cmo 12854  cexp 13046  cdvds 15174  bitscbits 15335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-dvds 15175  df-bits 15338
This theorem is referenced by:  sadaddlem  15382  sadadd  15383  bitsres  15389  smumul  15409
  Copyright terms: Public domain W3C validator