Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop2 Structured version   Visualization version   GIF version

Theorem lhop2 23997
 Description: L'Hôpital's Rule for limits from the left. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐵, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop2.a (𝜑𝐴 ∈ ℝ*)
lhop2.b (𝜑𝐵 ∈ ℝ)
lhop2.l (𝜑𝐴 < 𝐵)
lhop2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop2.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop2.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop2.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop2.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop2.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop2.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop2.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop2.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop2
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 12011 . . 3 ℚ ⊆ ℝ
2 lhop2.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 lhop2.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10301 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 lhop2.l . . . 4 (𝜑𝐴 < 𝐵)
6 qbtwnxr 12244 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
72, 4, 5, 6syl3anc 1477 . . 3 (𝜑 → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
8 ssrexv 3808 . . 3 (ℚ ⊆ ℝ → (∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵) → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵)))
91, 7, 8mpsyl 68 . 2 (𝜑 → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵))
10 simpr 479 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ (𝑎(,)𝐵))
11 simprl 811 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ)
1211adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑎 ∈ ℝ)
133ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝐵 ∈ ℝ)
14 elioore 12418 . . . . . . . 8 (𝑧 ∈ (𝑎(,)𝐵) → 𝑧 ∈ ℝ)
1514adantl 473 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℝ)
16 iooneg 12505 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1712, 13, 15, 16syl3anc 1477 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1810, 17mpbid 222 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
1918adantrr 755 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 ≠ -𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
20 lhop2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2120ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
22 elioore 12418 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → 𝑥 ∈ ℝ)
2322adantl 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℝ)
2423recnd 10280 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℂ)
2524negnegd 10595 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 = 𝑥)
26 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ (-𝐵(,)-𝑎))
2725, 26eqeltrd 2839 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 ∈ (-𝐵(,)-𝑎))
2811adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑎 ∈ ℝ)
293ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐵 ∈ ℝ)
3023renegcld 10669 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ ℝ)
31 iooneg 12505 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -𝑥 ∈ ℝ) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3228, 29, 30, 31syl3anc 1477 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3327, 32mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝑎(,)𝐵))
342adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 ∈ ℝ*)
35 simprrl 823 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 < 𝑎)
3611rexrd 10301 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ*)
37 xrltle 12195 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎𝐴𝑎))
3834, 36, 37syl2anc 696 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎𝐴𝑎))
3935, 38mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴𝑎)
40 iooss1 12423 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4134, 39, 40syl2anc 696 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4241sselda 3744 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ -𝑥 ∈ (𝑎(,)𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
4333, 42syldan 488 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝐴(,)𝐵))
4421, 43ffvelrnd 6524 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℝ)
4544recnd 10280 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℂ)
46 lhop2.g . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
4746ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
4847, 43ffvelrnd 6524 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℝ)
4948recnd 10280 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℂ)
50 lhop2.gn0 . . . . . . 7 (𝜑 → ¬ 0 ∈ ran 𝐺)
5150ad2antrr 764 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran 𝐺)
5246adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
53 ax-resscn 10205 . . . . . . . . . . . 12 ℝ ⊆ ℂ
54 fss 6217 . . . . . . . . . . . 12 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5552, 53, 54sylancl 697 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5655adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
57 ffn 6206 . . . . . . . . . 10 (𝐺:(𝐴(,)𝐵)⟶ℂ → 𝐺 Fn (𝐴(,)𝐵))
5856, 57syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺 Fn (𝐴(,)𝐵))
59 fnfvelrn 6520 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘-𝑥) ∈ ran 𝐺)
6058, 43, 59syl2anc 696 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ran 𝐺)
61 eleq1 2827 . . . . . . . 8 ((𝐺‘-𝑥) = 0 → ((𝐺‘-𝑥) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
6260, 61syl5ibcom 235 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐺‘-𝑥) = 0 → 0 ∈ ran 𝐺))
6362necon3bd 2946 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘-𝑥) ≠ 0))
6451, 63mpd 15 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ≠ 0)
6545, 49, 64divcld 11013 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) ∈ ℂ)
66 limcresi 23868 . . . . . 6 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵)
67 ioossre 12448 . . . . . . . 8 (𝑎(,)𝐵) ⊆ ℝ
68 resmpt 5607 . . . . . . . 8 ((𝑎(,)𝐵) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧))
6967, 68ax-mp 5 . . . . . . 7 ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧)
7069oveq1i 6824 . . . . . 6 (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
7166, 70sseqtri 3778 . . . . 5 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
72 eqid 2760 . . . . . . . 8 (𝑧 ∈ ℝ ↦ -𝑧) = (𝑧 ∈ ℝ ↦ -𝑧)
7372negcncf 22942 . . . . . . 7 (ℝ ⊆ ℂ → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
7453, 73mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
753adantr 472 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ)
76 negeq 10485 . . . . . 6 (𝑧 = 𝐵 → -𝑧 = -𝐵)
7774, 75, 76cnmptlimc 23873 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵))
7871, 77sseldi 3742 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵))
7975renegcld 10669 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ℝ)
8011renegcld 10669 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ)
8180rexrd 10301 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ*)
82 simprrr 824 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 < 𝐵)
8311, 75ltnegd 10817 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎 < 𝐵 ↔ -𝐵 < -𝑎))
8482, 83mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 < -𝑎)
85 eqid 2760 . . . . . . 7 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
8644, 85fmptd 6549 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
87 eqid 2760 . . . . . . 7 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
8848, 87fmptd 6549 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
89 reelprrecn 10240 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
9089a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ℝ ∈ {ℝ, ℂ})
91 neg1cn 11336 . . . . . . . . . . 11 -1 ∈ ℂ
9291a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -1 ∈ ℂ)
9320adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
9493ffvelrnda 6523 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
9594recnd 10280 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
96 fvexd 6365 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ V)
97 1cnd 10268 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 1 ∈ ℂ)
98 simpr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
9998recnd 10280 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
100 1cnd 10268 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
10190dvmptid 23939 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
102 ioossre 12448 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ⊆ ℝ
103102a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ⊆ ℝ)
104 eqid 2760 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
105104tgioo2 22827 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106 iooretop 22790 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ∈ (topGen‘ran (,))
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ∈ (topGen‘ran (,)))
10890, 99, 100, 101, 103, 105, 104, 107dvmptres 23945 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 1))
10990, 24, 97, 108dvmptneg 23948 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -1))
11093feqmptd 6412 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
111110oveq2d 6830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
112 dvf 23890 . . . . . . . . . . . . 13 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
113 lhop2.if . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
114113adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
115114feq2d 6192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
116112, 115mpbii 223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
117116feqmptd 6412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
118111, 117eqtr3d 2796 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
119 fveq2 6353 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐹𝑦) = (𝐹‘-𝑥))
120 fveq2 6353 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘-𝑥))
12190, 90, 43, 92, 95, 96, 109, 118, 119, 120dvmptco 23954 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)))
122116adantr 472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
123122, 43ffvelrnd 6524 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐹)‘-𝑥) ∈ ℂ)
124123, 92mulcomd 10273 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐹)‘-𝑥)))
125123mulm1d 10694 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐹)‘-𝑥)) = -((ℝ D 𝐹)‘-𝑥))
126124, 125eqtrd 2794 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = -((ℝ D 𝐹)‘-𝑥))
127126mpteq2dva 4896 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
128121, 127eqtrd 2794 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
129128dmeqd 5481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
130 negex 10491 . . . . . . . 8 -((ℝ D 𝐹)‘-𝑥) ∈ V
131 eqid 2760 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))
132130, 131dmmpti 6184 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (-𝐵(,)-𝑎)
133129, 132syl6eq 2810 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (-𝐵(,)-𝑎))
13452ffvelrnda 6523 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℝ)
135134recnd 10280 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℂ)
136 fvexd 6365 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) ∈ V)
13752feqmptd 6412 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)))
138137oveq2d 6830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))))
139 dvf 23890 . . . . . . . . . . . . 13 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
140 lhop2.ig . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
141140adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
142141feq2d 6192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
143139, 142mpbii 223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
144143feqmptd 6412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
145138, 144eqtr3d 2796 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
146 fveq2 6353 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐺𝑦) = (𝐺‘-𝑥))
147 fveq2 6353 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐺)‘𝑦) = ((ℝ D 𝐺)‘-𝑥))
14890, 90, 43, 92, 135, 136, 109, 145, 146, 147dvmptco 23954 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)))
149143adantr 472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
150149, 43ffvelrnd 6524 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ℂ)
151150, 92mulcomd 10273 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐺)‘-𝑥)))
152150mulm1d 10694 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐺)‘-𝑥)) = -((ℝ D 𝐺)‘-𝑥))
153151, 152eqtrd 2794 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = -((ℝ D 𝐺)‘-𝑥))
154153mpteq2dva 4896 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
155148, 154eqtrd 2794 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
156155dmeqd 5481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
157 negex 10491 . . . . . . . 8 -((ℝ D 𝐺)‘-𝑥) ∈ V
158 eqid 2760 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))
159157, 158dmmpti 6184 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (-𝐵(,)-𝑎)
160156, 159syl6eq 2810 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (-𝐵(,)-𝑎))
16143adantrr 755 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
162 limcresi 23868 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵)
163 resmpt 5607 . . . . . . . . . . 11 ((-𝐵(,)-𝑎) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥))
164102, 163ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)
165164oveq1i 6824 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
166162, 165sseqtri 3778 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
16775recnd 10280 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℂ)
168167negnegd 10595 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 = 𝐵)
169 eqid 2760 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ -𝑥) = (𝑥 ∈ ℝ ↦ -𝑥)
170169negcncf 22942 . . . . . . . . . . 11 (ℝ ⊆ ℂ → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
17153, 170mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
172 negeq 10485 . . . . . . . . . 10 (𝑥 = -𝐵 → -𝑥 = --𝐵)
173171, 79, 172cnmptlimc 23873 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
174168, 173eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
175166, 174sseldi 3742 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵))
176 lhop2.f0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
177176adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐹 lim 𝐵))
178110oveq1d 6829 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐹 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
179177, 178eleqtrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
180 eliooord 12446 . . . . . . . . . . . . . 14 (𝑥 ∈ (-𝐵(,)-𝑎) → (-𝐵 < 𝑥𝑥 < -𝑎))
181180adantl 473 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝐵 < 𝑥𝑥 < -𝑎))
182181simpld 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝐵 < 𝑥)
18329, 23, 182ltnegcon1d 10819 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 < 𝐵)
18430, 183ltned 10385 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥𝐵)
185184neneqd 2937 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ -𝑥 = 𝐵)
186185pm2.21d 118 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐹‘-𝑥) = 0))
187186impr 650 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐹‘-𝑥) = 0)
188161, 95, 175, 179, 119, 187limcco 23876 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) lim -𝐵))
189 lhop2.g0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
190189adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐺 lim 𝐵))
191137oveq1d 6829 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐺 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
192190, 191eleqtrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
193185pm2.21d 118 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐺‘-𝑥) = 0))
194193impr 650 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐺‘-𝑥) = 0)
195161, 135, 175, 192, 146, 194limcco 23876 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) lim -𝐵))
19660, 87fmptd 6549 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺)
197 frn 6214 . . . . . . . 8 ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺 → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
198196, 197syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
19950adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran 𝐺)
200198, 199ssneldd 3747 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
201 lhop2.gd0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
202201adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D 𝐺))
203155rneqd 5508 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
204203eleq2d 2825 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) ↔ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))))
205158, 157elrnmpti 5531 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) ↔ ∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥))
206 eqcom 2767 . . . . . . . . . . 11 (0 = -((ℝ D 𝐺)‘-𝑥) ↔ -((ℝ D 𝐺)‘-𝑥) = 0)
207150negeq0d 10596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 ↔ -((ℝ D 𝐺)‘-𝑥) = 0))
208 ffn 6206 . . . . . . . . . . . . . . 15 ((ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
209149, 208syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
210 fnfvelrn 6520 . . . . . . . . . . . . . 14 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
211209, 43, 210syl2anc 696 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
212 eleq1 2827 . . . . . . . . . . . . 13 (((ℝ D 𝐺)‘-𝑥) = 0 → (((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
213211, 212syl5ibcom 235 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
214207, 213sylbird 250 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
215206, 214syl5bi 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
216215rexlimdva 3169 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
217205, 216syl5bi 232 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) → 0 ∈ ran (ℝ D 𝐺)))
218204, 217sylbid 230 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) → 0 ∈ ran (ℝ D 𝐺)))
219202, 218mtod 189 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))))
220116ffvelrnda 6523 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
221143ffvelrnda 6523 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
222201ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
223143, 208syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
224 fnfvelrn 6520 . . . . . . . . . . . . 13 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
225223, 224sylan 489 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
226 eleq1 2827 . . . . . . . . . . . 12 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
227225, 226syl5ibcom 235 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
228227necon3bd 2946 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
229222, 228mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
230220, 221, 229divcld 11013 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
231 lhop2.c . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
232231adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
233 fveq2 6353 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘-𝑥))
234 fveq2 6353 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘-𝑥))
235233, 234oveq12d 6832 . . . . . . . 8 (𝑧 = -𝑥 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
236185pm2.21d 118 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶))
237236impr 650 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶)
238161, 230, 175, 232, 235, 237limcco 23876 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
239 nfcv 2902 . . . . . . . . . . . . 13 𝑥
240 nfcv 2902 . . . . . . . . . . . . 13 𝑥 D
241 nfmpt1 4899 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
242239, 240, 241nfov 6840 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))
243 nfcv 2902 . . . . . . . . . . . 12 𝑥𝑦
244242, 243nffv 6360 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦)
245 nfcv 2902 . . . . . . . . . . 11 𝑥 /
246 nfmpt1 4899 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
247239, 240, 246nfov 6840 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
248247, 243nffv 6360 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)
249244, 245, 248nfov 6840 . . . . . . . . . 10 𝑥(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))
250 nfcv 2902 . . . . . . . . . 10 𝑦(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
251 fveq2 6353 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥))
252 fveq2 6353 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
253251, 252oveq12d 6832 . . . . . . . . . 10 (𝑦 = 𝑥 → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) = (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
254249, 250, 253cbvmpt 4901 . . . . . . . . 9 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
255128fveq1d 6355 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥))
256131fvmpt2 6454 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐹)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
257130, 256mpan2 709 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
258255, 257sylan9eq 2814 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
259155fveq1d 6355 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥))
260158fvmpt2 6454 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐺)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
261157, 260mpan2 709 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
262259, 261sylan9eq 2814 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
263258, 262oveq12d 6832 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)))
264201ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran (ℝ D 𝐺))
265213necon3bd 2946 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘-𝑥) ≠ 0))
266264, 265mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ≠ 0)
267123, 150, 266div2negd 11028 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
268263, 267eqtrd 2794 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
269268mpteq2dva 4896 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
270254, 269syl5eq 2806 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
271270oveq1d 6829 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
272238, 271eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵))
27379, 81, 84, 86, 88, 133, 160, 188, 195, 200, 219, 272lhop1 23996 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵))
274 nffvmpt1 6361 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦)
275 nffvmpt1 6361 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)
276274, 245, 275nfov 6840 . . . . . . . 8 𝑥(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))
277 nfcv 2902 . . . . . . . 8 𝑦(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
278 fveq2 6353 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥))
279 fveq2 6353 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
280278, 279oveq12d 6832 . . . . . . . 8 (𝑦 = 𝑥 → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) = (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
281276, 277, 280cbvmpt 4901 . . . . . . 7 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
282 fvex 6363 . . . . . . . . . 10 (𝐹‘-𝑥) ∈ V
28385fvmpt2 6454 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐹‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
28426, 282, 283sylancl 697 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
285 fvex 6363 . . . . . . . . . 10 (𝐺‘-𝑥) ∈ V
28687fvmpt2 6454 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐺‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
28726, 285, 286sylancl 697 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
288284, 287oveq12d 6832 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) = ((𝐹‘-𝑥) / (𝐺‘-𝑥)))
289288mpteq2dva 4896 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
290281, 289syl5eq 2806 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
291290oveq1d 6829 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
292273, 291eleqtrd 2841 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
293 negeq 10485 . . . . . 6 (𝑥 = -𝑧 → -𝑥 = --𝑧)
294293fveq2d 6357 . . . . 5 (𝑥 = -𝑧 → (𝐹‘-𝑥) = (𝐹‘--𝑧))
295293fveq2d 6357 . . . . 5 (𝑥 = -𝑧 → (𝐺‘-𝑥) = (𝐺‘--𝑧))
296294, 295oveq12d 6832 . . . 4 (𝑥 = -𝑧 → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) = ((𝐹‘--𝑧) / (𝐺‘--𝑧)))
29779adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 ∈ ℝ)
298 eliooord 12446 . . . . . . . . . . 11 (𝑧 ∈ (𝑎(,)𝐵) → (𝑎 < 𝑧𝑧 < 𝐵))
299298adantl 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑎 < 𝑧𝑧 < 𝐵))
300299simprd 482 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 < 𝐵)
30115, 13ltnegd 10817 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 < 𝐵 ↔ -𝐵 < -𝑧))
302300, 301mpbid 222 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 < -𝑧)
303297, 302gtned 10384 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ≠ -𝐵)
304303neneqd 2937 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ¬ -𝑧 = -𝐵)
305304pm2.21d 118 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (-𝑧 = -𝐵 → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶))
306305impr 650 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 = -𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶)
30719, 65, 78, 292, 296, 306limcco 23876 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵))
30815recnd 10280 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℂ)
309308negnegd 10595 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → --𝑧 = 𝑧)
310309fveq2d 6357 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐹‘--𝑧) = (𝐹𝑧))
311309fveq2d 6357 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐺‘--𝑧) = (𝐺𝑧))
312310, 311oveq12d 6832 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
313312mpteq2dva 4896 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
314313oveq1d 6829 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
31541resmptd 5610 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
316315oveq1d 6829 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
317 fss 6217 . . . . . . . . 9 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31893, 53, 317sylancl 697 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
319318ffvelrnda 6523 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
32055ffvelrnda 6523 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
32150ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
32255, 57syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 Fn (𝐴(,)𝐵))
323 fnfvelrn 6520 . . . . . . . . . . 11 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
324322, 323sylan 489 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
325 eleq1 2827 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
326324, 325syl5ibcom 235 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
327326necon3bd 2946 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
328321, 327mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
329319, 320, 328divcld 11013 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
330 eqid 2760 . . . . . 6 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
331329, 330fmptd 6549 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
332 ioossre 12448 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
333332, 53sstri 3753 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
334333a1i 11 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℂ)
335 eqid 2760 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
336 ssun2 3920 . . . . . . 7 {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})
337 snssg 4459 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
33875, 337syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
339336, 338mpbiri 248 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}))
340104cnfldtopon 22807 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
341332a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℝ)
34275snssd 4485 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ ℝ)
343341, 342unssd 3932 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
344343, 53syl6ss 3756 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ)
345 resttopon 21187 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
346340, 344, 345sylancr 698 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
347 topontop 20940 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
348346, 347syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
349 indi 4016 . . . . . . . . . 10 ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵}))
350 pnfxr 10304 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
351350a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → +∞ ∈ ℝ*)
3524adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ*)
353 iooin 12422 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
35436, 351, 34, 352, 353syl22anc 1478 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
355 xrltnle 10317 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35634, 36, 355syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35735, 356mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 𝑎𝐴)
358357iffalsed 4241 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
359 ltpnf 12167 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < +∞)
36075, 359syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 < +∞)
361 xrltnle 10317 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
362352, 350, 361sylancl 697 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
363360, 362mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ +∞ ≤ 𝐵)
364363iffalsed 4241 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(+∞ ≤ 𝐵, +∞, 𝐵) = 𝐵)
365358, 364oveq12d 6832 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)) = (𝑎(,)𝐵))
366354, 365eqtrd 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (𝑎(,)𝐵))
367 elioopnf 12480 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ* → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36836, 367syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36975, 82, 368mpbir2and 995 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ (𝑎(,)+∞))
370369snssd 4485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ (𝑎(,)+∞))
371 sseqin2 3960 . . . . . . . . . . . 12 ({𝐵} ⊆ (𝑎(,)+∞) ↔ ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
372370, 371sylib 208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
373366, 372uneq12d 3911 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
374349, 373syl5eq 2806 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
375 retop 22786 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
376375a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (topGen‘ran (,)) ∈ Top)
377 reex 10239 . . . . . . . . . . . 12 ℝ ∈ V
378377ssex 4954 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
379343, 378syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
380 iooretop 22790 . . . . . . . . . . 11 (𝑎(,)+∞) ∈ (topGen‘ran (,))
381380a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)+∞) ∈ (topGen‘ran (,)))
382 elrestr 16311 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V ∧ (𝑎(,)+∞) ∈ (topGen‘ran (,))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
383376, 379, 381, 382syl3anc 1477 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
384374, 383eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
385 eqid 2760 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
386104, 385rerest 22828 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
387343, 386syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
388384, 387eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
389 isopn3i 21108 . . . . . . 7 ((((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top ∧ ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
390348, 388, 389syl2anc 696 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
391339, 390eleqtrrd 2842 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})))
392331, 41, 334, 104, 335, 391limcres 23869 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
393314, 316, 3923eqtr2d 2800 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
394307, 393eleqtrd 2841 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
3959, 394rexlimddv 3173 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  Vcvv 3340   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ifcif 4230  {csn 4321  {cpr 4323   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ran crn 5267   ↾ cres 5268   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   · cmul 10153  +∞cpnf 10283  ℝ*cxr 10285   < clt 10286   ≤ cle 10287  -cneg 10479   / cdiv 10896  ℚcq 12001  (,)cioo 12388   ↾t crest 16303  TopOpenctopn 16304  topGenctg 16320  ℂfldccnfld 19968  Topctop 20920  TopOnctopon 20937  intcnt 21043  –cn→ccncf 22900   limℂ climc 23845   D cdv 23846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850 This theorem is referenced by:  lhop  23998  fourierdlem60  40904
 Copyright terms: Public domain W3C validator