Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2omapen Unicode version

Theorem 2omapen 16271
Description: Equinumerosity of  ( 2o 
^m  A ) and the set of decidable subsets of  A. (Contributed by Jim Kingdon, 14-Nov-2025.)
Assertion
Ref Expression
2omapen  |-  ( A  e.  V  ->  ( 2o  ^m  A )  ~~  { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
Distinct variable groups:    x, A, y   
y, V
Allowed substitution hint:    V( x)

Proof of Theorem 2omapen
Dummy variables  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6772 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 2onn 6637 . . . 4  |-  2o  e.  om
32elexi 2792 . . 3  |-  2o  e.  _V
4 elex 2791 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
5 fnovex 6007 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  2o  e.  _V  /\  A  e. 
_V )  ->  ( 2o  ^m  A )  e. 
_V )
61, 3, 4, 5mp3an12i 1356 . 2  |-  ( A  e.  V  ->  ( 2o  ^m  A )  e. 
_V )
7 eqid 2209 . . 3  |-  ( s  e.  ( 2o  ^m  A )  |->  { z  e.  A  |  ( s `  z )  =  1o } )  =  ( s  e.  ( 2o  ^m  A
)  |->  { z  e.  A  |  ( s `
 z )  =  1o } )
872omap 16270 . 2  |-  ( A  e.  V  ->  (
s  e.  ( 2o 
^m  A )  |->  { z  e.  A  | 
( s `  z
)  =  1o }
) : ( 2o 
^m  A ) -1-1-onto-> { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
9 f1oeng 6878 . 2  |-  ( ( ( 2o  ^m  A
)  e.  _V  /\  ( s  e.  ( 2o  ^m  A ) 
|->  { z  e.  A  |  ( s `  z )  =  1o } ) : ( 2o  ^m  A ) -1-1-onto-> { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )  -> 
( 2o  ^m  A
)  ~~  { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
106, 8, 9syl2anc 411 1  |-  ( A  e.  V  ->  ( 2o  ^m  A )  ~~  { x  e.  ~P A  |  A. y  e.  A DECID  y  e.  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 838    = wceq 1375    e. wcel 2180   A.wral 2488   {crab 2492   _Vcvv 2779   ~Pcpw 3629   class class class wbr 4062    |-> cmpt 4124   omcom 4659    X. cxp 4694    Fn wfn 5289   -1-1-onto->wf1o 5293   ` cfv 5294  (class class class)co 5974   1oc1o 6525   2oc2o 6526    ^m cmap 6765    ~~ cen 6855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-map 6767  df-en 6858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator