| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2omapen | GIF version | ||
| Description: Equinumerosity of (2o ↑𝑚 𝐴) and the set of decidable subsets of 𝐴. (Contributed by Jim Kingdon, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| 2omapen | ⊢ (𝐴 ∈ 𝑉 → (2o ↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6749 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | 2onn 6614 | . . . 4 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 2785 | . . 3 ⊢ 2o ∈ V |
| 4 | elex 2784 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 5 | fnovex 5984 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 2o ∈ V ∧ 𝐴 ∈ V) → (2o ↑𝑚 𝐴) ∈ V) | |
| 6 | 1, 3, 4, 5 | mp3an12i 1354 | . 2 ⊢ (𝐴 ∈ 𝑉 → (2o ↑𝑚 𝐴) ∈ V) |
| 7 | eqid 2206 | . . 3 ⊢ (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) = (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) | |
| 8 | 7 | 2omap 16006 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}):(2o ↑𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| 9 | f1oeng 6855 | . 2 ⊢ (((2o ↑𝑚 𝐴) ∈ V ∧ (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}):(2o ↑𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) → (2o ↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) | |
| 10 | 6, 8, 9 | syl2anc 411 | 1 ⊢ (𝐴 ∈ 𝑉 → (2o ↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 Vcvv 2773 𝒫 cpw 3617 class class class wbr 4047 ↦ cmpt 4109 ωcom 4642 × cxp 4677 Fn wfn 5271 –1-1-onto→wf1o 5275 ‘cfv 5276 (class class class)co 5951 1oc1o 6502 2oc2o 6503 ↑𝑚 cmap 6742 ≈ cen 6832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-1o 6509 df-2o 6510 df-map 6744 df-en 6835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |