| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2omapen | GIF version | ||
| Description: Equinumerosity of (2o ↑𝑚 𝐴) and the set of decidable subsets of 𝐴. (Contributed by Jim Kingdon, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| 2omapen | ⊢ (𝐴 ∈ 𝑉 → (2o ↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6723 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | 2onn 6588 | . . . 4 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 2775 | . . 3 ⊢ 2o ∈ V |
| 4 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 5 | fnovex 5958 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 2o ∈ V ∧ 𝐴 ∈ V) → (2o ↑𝑚 𝐴) ∈ V) | |
| 6 | 1, 3, 4, 5 | mp3an12i 1352 | . 2 ⊢ (𝐴 ∈ 𝑉 → (2o ↑𝑚 𝐴) ∈ V) |
| 7 | eqid 2196 | . . 3 ⊢ (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) = (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) | |
| 8 | 7 | 2omap 15726 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}):(2o ↑𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| 9 | f1oeng 6825 | . 2 ⊢ (((2o ↑𝑚 𝐴) ∈ V ∧ (𝑠 ∈ (2o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}):(2o ↑𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) → (2o ↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) | |
| 10 | 6, 8, 9 | syl2anc 411 | 1 ⊢ (𝐴 ∈ 𝑉 → (2o ↑𝑚 𝐴) ≈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 Vcvv 2763 𝒫 cpw 3606 class class class wbr 4034 ↦ cmpt 4095 ωcom 4627 × cxp 4662 Fn wfn 5254 –1-1-onto→wf1o 5258 ‘cfv 5259 (class class class)co 5925 1oc1o 6476 2oc2o 6477 ↑𝑚 cmap 6716 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-1o 6483 df-2o 6484 df-map 6718 df-en 6809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |