ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo Unicode version

Theorem elfzomelpfzo 10432
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ( ( M  -  L
)..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 9483 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ )  ->  ( M  -  L
)  e.  ZZ )
21ad2ant2rl 511 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( M  -  L
)  e.  ZZ )
3 simpl 109 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
43adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  M  e.  ZZ )
52, 42thd 175 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( M  -  L )  e.  ZZ  <->  M  e.  ZZ ) )
6 simpl 109 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  ZZ )
76adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  K  e.  ZZ )
8 zaddcl 9482 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  +  L
)  e.  ZZ )
98adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  +  L
)  e.  ZZ )
107, 92thd 175 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ZZ  <->  ( K  +  L )  e.  ZZ ) )
11 zre 9446 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1312adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  M  e.  RR )
14 zre 9446 . . . . . . . 8  |-  ( L  e.  ZZ  ->  L  e.  RR )
1514adantl 277 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  RR )
1615adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  L  e.  RR )
17 zre 9446 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
1817adantr 276 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  RR )
1918adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  K  e.  RR )
2013, 16, 19lesubaddd 8685 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( M  -  L )  <_  K  <->  M  <_  ( K  +  L ) ) )
215, 10, 203anbi123d 1346 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( ( M  -  L )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  -  L )  <_  K )  <->  ( M  e.  ZZ  /\  ( K  +  L )  e.  ZZ  /\  M  <_ 
( K  +  L
) ) ) )
22 eluz2 9724 . . . 4  |-  ( K  e.  ( ZZ>= `  ( M  -  L )
)  <->  ( ( M  -  L )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  -  L )  <_  K ) )
23 eluz2 9724 . . . 4  |-  ( ( K  +  L )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( K  +  L )  e.  ZZ  /\  M  <_ 
( K  +  L
) ) )
2421, 22, 233bitr4g 223 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  (
ZZ>= `  ( M  -  L ) )  <->  ( K  +  L )  e.  (
ZZ>= `  M ) ) )
25 zsubcl 9483 . . . . 5  |-  ( ( N  e.  ZZ  /\  L  e.  ZZ )  ->  ( N  -  L
)  e.  ZZ )
2625ad2ant2l 508 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( N  -  L
)  e.  ZZ )
27 simplr 528 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  N  e.  ZZ )
2826, 272thd 175 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( N  -  L )  e.  ZZ  <->  N  e.  ZZ ) )
29 zre 9446 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
3029adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3130adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  N  e.  RR )
3219, 16, 31ltaddsubd 8688 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( K  +  L )  <  N  <->  K  <  ( N  -  L ) ) )
3332bicomd 141 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  <  ( N  -  L )  <->  ( K  +  L )  <  N ) )
3424, 28, 333anbi123d 1346 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( K  e.  ( ZZ>= `  ( M  -  L ) )  /\  ( N  -  L
)  e.  ZZ  /\  K  <  ( N  -  L ) )  <->  ( ( K  +  L )  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  ( K  +  L
)  <  N )
) )
35 elfzo2 10342 . 2  |-  ( K  e.  ( ( M  -  L )..^ ( N  -  L ) )  <->  ( K  e.  ( ZZ>= `  ( M  -  L ) )  /\  ( N  -  L
)  e.  ZZ  /\  K  <  ( N  -  L ) ) )
36 elfzo2 10342 . 2  |-  ( ( K  +  L )  e.  ( M..^ N
)  <->  ( ( K  +  L )  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  ( K  +  L
)  <  N )
)
3734, 35, 363bitr4g 223 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ( ( M  -  L
)..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   RRcr 7994    + caddc 7998    < clt 8177    <_ cle 8178    - cmin 8313   ZZcz 9442   ZZ>=cuz 9718  ..^cfzo 10334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335
This theorem is referenced by:  pfxccatin12lem2a  11254
  Copyright terms: Public domain W3C validator