ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo Unicode version

Theorem elfzomelpfzo 9901
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ( ( M  -  L
)..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 8999 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ )  ->  ( M  -  L
)  e.  ZZ )
21ad2ant2rl 500 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( M  -  L
)  e.  ZZ )
3 simpl 108 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
43adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  M  e.  ZZ )
52, 42thd 174 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( M  -  L )  e.  ZZ  <->  M  e.  ZZ ) )
6 simpl 108 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  ZZ )
76adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  K  e.  ZZ )
8 zaddcl 8998 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  +  L
)  e.  ZZ )
98adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  +  L
)  e.  ZZ )
107, 92thd 174 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ZZ  <->  ( K  +  L )  e.  ZZ ) )
11 zre 8962 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantr 272 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1312adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  M  e.  RR )
14 zre 8962 . . . . . . . 8  |-  ( L  e.  ZZ  ->  L  e.  RR )
1514adantl 273 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  RR )
1615adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  L  e.  RR )
17 zre 8962 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
1817adantr 272 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  RR )
1918adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  K  e.  RR )
2013, 16, 19lesubaddd 8222 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( M  -  L )  <_  K  <->  M  <_  ( K  +  L ) ) )
215, 10, 203anbi123d 1273 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( ( M  -  L )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  -  L )  <_  K )  <->  ( M  e.  ZZ  /\  ( K  +  L )  e.  ZZ  /\  M  <_ 
( K  +  L
) ) ) )
22 eluz2 9234 . . . 4  |-  ( K  e.  ( ZZ>= `  ( M  -  L )
)  <->  ( ( M  -  L )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  -  L )  <_  K ) )
23 eluz2 9234 . . . 4  |-  ( ( K  +  L )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( K  +  L )  e.  ZZ  /\  M  <_ 
( K  +  L
) ) )
2421, 22, 233bitr4g 222 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  (
ZZ>= `  ( M  -  L ) )  <->  ( K  +  L )  e.  (
ZZ>= `  M ) ) )
25 zsubcl 8999 . . . . 5  |-  ( ( N  e.  ZZ  /\  L  e.  ZZ )  ->  ( N  -  L
)  e.  ZZ )
2625ad2ant2l 497 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( N  -  L
)  e.  ZZ )
27 simplr 502 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  N  e.  ZZ )
2826, 272thd 174 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( N  -  L )  e.  ZZ  <->  N  e.  ZZ ) )
29 zre 8962 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
3029adantl 273 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3130adantr 272 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  N  e.  RR )
3219, 16, 31ltaddsubd 8225 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( K  +  L )  <  N  <->  K  <  ( N  -  L ) ) )
3332bicomd 140 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  <  ( N  -  L )  <->  ( K  +  L )  <  N ) )
3424, 28, 333anbi123d 1273 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( K  e.  ( ZZ>= `  ( M  -  L ) )  /\  ( N  -  L
)  e.  ZZ  /\  K  <  ( N  -  L ) )  <->  ( ( K  +  L )  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  ( K  +  L
)  <  N )
) )
35 elfzo2 9820 . 2  |-  ( K  e.  ( ( M  -  L )..^ ( N  -  L ) )  <->  ( K  e.  ( ZZ>= `  ( M  -  L ) )  /\  ( N  -  L
)  e.  ZZ  /\  K  <  ( N  -  L ) ) )
36 elfzo2 9820 . 2  |-  ( ( K  +  L )  e.  ( M..^ N
)  <->  ( ( K  +  L )  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  ( K  +  L
)  <  N )
)
3734, 35, 363bitr4g 222 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ( ( M  -  L
)..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    e. wcel 1463   class class class wbr 3895   ` cfv 5081  (class class class)co 5728   RRcr 7546    + caddc 7550    < clt 7724    <_ cle 7725    - cmin 7856   ZZcz 8958   ZZ>=cuz 9228  ..^cfzo 9812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684  df-fzo 9813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator