ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo Unicode version

Theorem elfzomelpfzo 10358
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ( ( M  -  L
)..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 9412 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ )  ->  ( M  -  L
)  e.  ZZ )
21ad2ant2rl 511 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( M  -  L
)  e.  ZZ )
3 simpl 109 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
43adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  M  e.  ZZ )
52, 42thd 175 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( M  -  L )  e.  ZZ  <->  M  e.  ZZ ) )
6 simpl 109 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  ZZ )
76adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  K  e.  ZZ )
8 zaddcl 9411 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  +  L
)  e.  ZZ )
98adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  +  L
)  e.  ZZ )
107, 92thd 175 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ZZ  <->  ( K  +  L )  e.  ZZ ) )
11 zre 9375 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1312adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  M  e.  RR )
14 zre 9375 . . . . . . . 8  |-  ( L  e.  ZZ  ->  L  e.  RR )
1514adantl 277 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  RR )
1615adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  L  e.  RR )
17 zre 9375 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
1817adantr 276 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  K  e.  RR )
1918adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  K  e.  RR )
2013, 16, 19lesubaddd 8614 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( M  -  L )  <_  K  <->  M  <_  ( K  +  L ) ) )
215, 10, 203anbi123d 1324 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( ( M  -  L )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  -  L )  <_  K )  <->  ( M  e.  ZZ  /\  ( K  +  L )  e.  ZZ  /\  M  <_ 
( K  +  L
) ) ) )
22 eluz2 9653 . . . 4  |-  ( K  e.  ( ZZ>= `  ( M  -  L )
)  <->  ( ( M  -  L )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  -  L )  <_  K ) )
23 eluz2 9653 . . . 4  |-  ( ( K  +  L )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( K  +  L )  e.  ZZ  /\  M  <_ 
( K  +  L
) ) )
2421, 22, 233bitr4g 223 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  (
ZZ>= `  ( M  -  L ) )  <->  ( K  +  L )  e.  (
ZZ>= `  M ) ) )
25 zsubcl 9412 . . . . 5  |-  ( ( N  e.  ZZ  /\  L  e.  ZZ )  ->  ( N  -  L
)  e.  ZZ )
2625ad2ant2l 508 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( N  -  L
)  e.  ZZ )
27 simplr 528 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  N  e.  ZZ )
2826, 272thd 175 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( N  -  L )  e.  ZZ  <->  N  e.  ZZ ) )
29 zre 9375 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
3029adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3130adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  N  e.  RR )
3219, 16, 31ltaddsubd 8617 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( K  +  L )  <  N  <->  K  <  ( N  -  L ) ) )
3332bicomd 141 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  <  ( N  -  L )  <->  ( K  +  L )  <  N ) )
3424, 28, 333anbi123d 1324 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( K  e.  ( ZZ>= `  ( M  -  L ) )  /\  ( N  -  L
)  e.  ZZ  /\  K  <  ( N  -  L ) )  <->  ( ( K  +  L )  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  ( K  +  L
)  <  N )
) )
35 elfzo2 10271 . 2  |-  ( K  e.  ( ( M  -  L )..^ ( N  -  L ) )  <->  ( K  e.  ( ZZ>= `  ( M  -  L ) )  /\  ( N  -  L
)  e.  ZZ  /\  K  <  ( N  -  L ) ) )
36 elfzo2 10271 . 2  |-  ( ( K  +  L )  e.  ( M..^ N
)  <->  ( ( K  +  L )  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  ( K  +  L
)  <  N )
)
3734, 35, 363bitr4g 223 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( K  e.  ( ( M  -  L
)..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2175   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   RRcr 7923    + caddc 7927    < clt 8106    <_ cle 8107    - cmin 8242   ZZcz 9371   ZZ>=cuz 9647  ..^cfzo 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator