ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssq Unicode version

Theorem dvdssq 11559
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )

Proof of Theorem dvdssq
StepHypRef Expression
1 0z 8963 . . . 4  |-  0  e.  ZZ
2 zdceq 9024 . . . 4  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
31, 2mpan2 419 . . 3  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
4 exmiddc 804 . . 3  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
5 0dvds 11355 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
6 zcn 8957 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 sqeq0 10243 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
( N ^ 2 )  =  0  <->  N  =  0 ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  =  0  <->  N  =  0 ) )
95, 8bitr4d 190 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  ( N ^ 2 )  =  0 ) )
10 zsqcl 10250 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
11 0dvds 11355 . . . . . . . 8  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
0  ||  ( N ^ 2 )  <->  ( N ^ 2 )  =  0 ) )
1210, 11syl 14 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  ||  ( N ^ 2 )  <->  ( N ^ 2 )  =  0 ) )
139, 12bitr4d 190 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  ||  ( N ^ 2 ) ) )
1413adantl 273 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0 
||  ( N ^
2 ) ) )
15 breq1 3896 . . . . . 6  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
16 sq0i 10271 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ 2 )  =  0 )
1716breq1d 3903 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ 2 )  ||  ( N ^ 2 )  <->  0  ||  ( N ^ 2 ) ) )
1815, 17bibi12d 234 . . . . 5  |-  ( M  =  0  ->  (
( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) )  <->  ( 0 
||  N  <->  0  ||  ( N ^ 2 ) ) ) )
1914, 18syl5ibr 155 . . . 4  |-  ( M  =  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
20 df-ne 2281 . . . . 5  |-  ( M  =/=  0  <->  -.  M  =  0 )
21 nnabscl 10758 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
22 zdceq 9024 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
231, 22mpan2 419 . . . . . . . . . . 11  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
24 exmiddc 804 . . . . . . . . . . 11  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
25 nnz 8971 . . . . . . . . . . . . . . 15  |-  ( ( abs `  M )  e.  NN  ->  ( abs `  M )  e.  ZZ )
26 dvds0 11350 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  e.  ZZ  ->  ( abs `  M )  ||  0 )
27 zsqcl 10250 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) ^ 2 )  e.  ZZ )
28 dvds0 11350 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
) ^ 2 )  e.  ZZ  ->  (
( abs `  M
) ^ 2 ) 
||  0 )
2927, 28syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) ^ 2 ) 
||  0 )
3026, 292thd 174 . . . . . . . . . . . . . . 15  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3125, 30syl 14 . . . . . . . . . . . . . 14  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3231adantr 272 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
33 breq2 3897 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  (
( abs `  M
)  ||  N  <->  ( abs `  M )  ||  0
) )
34 sq0i 10271 . . . . . . . . . . . . . . 15  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
3534breq2d 3905 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  (
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3633, 35bibi12d 234 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  (
( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) )  <-> 
( ( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) ) )
3732, 36syl5ibr 155 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
38 df-ne 2281 . . . . . . . . . . . . 13  |-  ( N  =/=  0  <->  -.  N  =  0 )
39 nnabscl 10758 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
40 dvdssqlem 11558 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( abs `  M
)  ||  ( abs `  N )  <->  ( ( abs `  M ) ^
2 )  ||  (
( abs `  N
) ^ 2 ) ) )
4139, 40sylan2 282 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  ( abs `  N )  <-> 
( ( abs `  M
) ^ 2 ) 
||  ( ( abs `  N ) ^ 2 ) ) )
42 simpl 108 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  ZZ )
43 dvdsabsb 11354 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
4425, 42, 43syl2an 285 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  N 
<->  ( abs `  M
)  ||  ( abs `  N ) ) )
45 nnsqcl 10249 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
) ^ 2 )  e.  NN )
4645nnzd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
) ^ 2 )  e.  ZZ )
4710adantr 272 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( N ^ 2 )  e.  ZZ )
48 dvdsabsb 11354 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( abs `  M
) ^ 2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  ->  (
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
4946, 47, 48syl2an 285 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
506adantr 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
51 abssq 10739 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  CC  ->  (
( abs `  N
) ^ 2 )  =  ( abs `  ( N ^ 2 ) ) )
5250, 51syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
) ^ 2 )  =  ( abs `  ( N ^ 2 ) ) )
5352breq2d 3905 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  M ) ^ 2 )  ||  ( ( abs `  N ) ^ 2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
5453adantl 273 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( ( abs `  N ) ^ 2 )  <->  ( ( abs `  M ) ^ 2 )  ||  ( abs `  ( N ^ 2 ) ) ) )
5549, 54bitr4d 190 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  (
( abs `  N
) ^ 2 ) ) )
5641, 44, 553bitr4d 219 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  N 
<->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
5756anassrs 395 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( abs `  M )  ||  N 
<->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
5857expcom 115 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
5938, 58sylbir 134 . . . . . . . . . . . 12  |-  ( -.  N  =  0  -> 
( ( ( abs `  M )  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M )  ||  N  <->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) ) )
6037, 59jaoi 688 . . . . . . . . . . 11  |-  ( ( N  =  0  \/ 
-.  N  =  0 )  ->  ( (
( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
6123, 24, 603syl 17 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
6261anabsi7 553 . . . . . . . . 9  |-  ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
6321, 62sylan 279 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  M )  ||  N  <->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
64 absdvdsb 11353 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  N ) )
6564adantlr 466 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( abs `  M
)  ||  N )
)
66 zsqcl 10250 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
6766adantr 272 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M ^ 2 )  e.  ZZ )
68 absdvdsb 11353 . . . . . . . . . 10  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  -> 
( ( M ^
2 )  ||  ( N ^ 2 )  <->  ( abs `  ( M ^ 2 ) )  ||  ( N ^ 2 ) ) )
6967, 10, 68syl2an 285 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( N ^ 2 )  <-> 
( abs `  ( M ^ 2 ) ) 
||  ( N ^
2 ) ) )
70 zcn 8957 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
71 abssq 10739 . . . . . . . . . . . . . 14  |-  ( M  e.  CC  ->  (
( abs `  M
) ^ 2 )  =  ( abs `  ( M ^ 2 ) ) )
7270, 71syl 14 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  (
( abs `  M
) ^ 2 )  =  ( abs `  ( M ^ 2 ) ) )
7372eqcomd 2118 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( abs `  ( M ^
2 ) )  =  ( ( abs `  M
) ^ 2 ) )
7473adantr 272 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  ( M ^ 2 ) )  =  ( ( abs `  M ) ^ 2 ) )
7574breq1d 3903 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( abs `  ( M ^ 2 ) ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
7675adantr 272 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  ( M ^ 2 ) )  ||  ( N ^ 2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
7769, 76bitrd 187 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( N ^ 2 )  <-> 
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
7863, 65, 773bitr4d 219 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) )
7978an32s 540 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  ||  N  <->  ( M ^
2 )  ||  ( N ^ 2 ) ) )
8079expcom 115 . . . . 5  |-  ( M  =/=  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8120, 80sylbir 134 . . . 4  |-  ( -.  M  =  0  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8219, 81jaoi 688 . . 3  |-  ( ( M  =  0  \/ 
-.  M  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
833, 4, 823syl 17 . 2  |-  ( M  e.  ZZ  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8483anabsi5 551 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680  DECID wdc 802    = wceq 1312    e. wcel 1461    =/= wne 2280   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   CCcc 7539   0cc0 7541   NNcn 8624   2c2 8675   ZZcz 8952   ^cexp 10179   abscabs 10655    || cdvds 11335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-sup 6821  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-fz 9678  df-fzo 9807  df-fl 9930  df-mod 9983  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657  df-dvds 11336  df-gcd 11478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator