ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssq Unicode version

Theorem dvdssq 12223
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )

Proof of Theorem dvdssq
StepHypRef Expression
1 0z 9354 . . . 4  |-  0  e.  ZZ
2 zdceq 9418 . . . 4  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
31, 2mpan2 425 . . 3  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
4 exmiddc 837 . . 3  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
5 0dvds 11993 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
6 zcn 9348 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 sqeq0 10711 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
( N ^ 2 )  =  0  <->  N  =  0 ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  =  0  <->  N  =  0 ) )
95, 8bitr4d 191 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  ( N ^ 2 )  =  0 ) )
10 zsqcl 10719 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
11 0dvds 11993 . . . . . . . 8  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
0  ||  ( N ^ 2 )  <->  ( N ^ 2 )  =  0 ) )
1210, 11syl 14 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  ||  ( N ^ 2 )  <->  ( N ^ 2 )  =  0 ) )
139, 12bitr4d 191 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  ||  ( N ^ 2 ) ) )
1413adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0 
||  ( N ^
2 ) ) )
15 breq1 4037 . . . . . 6  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
16 sq0i 10740 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ 2 )  =  0 )
1716breq1d 4044 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ 2 )  ||  ( N ^ 2 )  <->  0  ||  ( N ^ 2 ) ) )
1815, 17bibi12d 235 . . . . 5  |-  ( M  =  0  ->  (
( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) )  <->  ( 0 
||  N  <->  0  ||  ( N ^ 2 ) ) ) )
1914, 18imbitrrid 156 . . . 4  |-  ( M  =  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
20 df-ne 2368 . . . . 5  |-  ( M  =/=  0  <->  -.  M  =  0 )
21 nnabscl 11282 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
22 zdceq 9418 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
231, 22mpan2 425 . . . . . . . . . . 11  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
24 exmiddc 837 . . . . . . . . . . 11  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
25 nnz 9362 . . . . . . . . . . . . . . 15  |-  ( ( abs `  M )  e.  NN  ->  ( abs `  M )  e.  ZZ )
26 dvds0 11988 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  e.  ZZ  ->  ( abs `  M )  ||  0 )
27 zsqcl 10719 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) ^ 2 )  e.  ZZ )
28 dvds0 11988 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
) ^ 2 )  e.  ZZ  ->  (
( abs `  M
) ^ 2 ) 
||  0 )
2927, 28syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) ^ 2 ) 
||  0 )
3026, 292thd 175 . . . . . . . . . . . . . . 15  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3125, 30syl 14 . . . . . . . . . . . . . 14  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3231adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
33 breq2 4038 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  (
( abs `  M
)  ||  N  <->  ( abs `  M )  ||  0
) )
34 sq0i 10740 . . . . . . . . . . . . . . 15  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
3534breq2d 4046 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  (
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3633, 35bibi12d 235 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  (
( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) )  <-> 
( ( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) ) )
3732, 36imbitrrid 156 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
38 df-ne 2368 . . . . . . . . . . . . 13  |-  ( N  =/=  0  <->  -.  N  =  0 )
39 nnabscl 11282 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
40 dvdssqlem 12222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( abs `  M
)  ||  ( abs `  N )  <->  ( ( abs `  M ) ^
2 )  ||  (
( abs `  N
) ^ 2 ) ) )
4139, 40sylan2 286 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  ( abs `  N )  <-> 
( ( abs `  M
) ^ 2 ) 
||  ( ( abs `  N ) ^ 2 ) ) )
42 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  ZZ )
43 dvdsabsb 11992 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
4425, 42, 43syl2an 289 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  N 
<->  ( abs `  M
)  ||  ( abs `  N ) ) )
45 nnsqcl 10718 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
) ^ 2 )  e.  NN )
4645nnzd 9464 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
) ^ 2 )  e.  ZZ )
4710adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( N ^ 2 )  e.  ZZ )
48 dvdsabsb 11992 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( abs `  M
) ^ 2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  ->  (
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
4946, 47, 48syl2an 289 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
506adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
51 abssq 11263 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  CC  ->  (
( abs `  N
) ^ 2 )  =  ( abs `  ( N ^ 2 ) ) )
5250, 51syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
) ^ 2 )  =  ( abs `  ( N ^ 2 ) ) )
5352breq2d 4046 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  M ) ^ 2 )  ||  ( ( abs `  N ) ^ 2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
5453adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( ( abs `  N ) ^ 2 )  <->  ( ( abs `  M ) ^ 2 )  ||  ( abs `  ( N ^ 2 ) ) ) )
5549, 54bitr4d 191 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  (
( abs `  N
) ^ 2 ) ) )
5641, 44, 553bitr4d 220 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  N 
<->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
5756anassrs 400 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( abs `  M )  ||  N 
<->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
5857expcom 116 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
5938, 58sylbir 135 . . . . . . . . . . . 12  |-  ( -.  N  =  0  -> 
( ( ( abs `  M )  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M )  ||  N  <->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) ) )
6037, 59jaoi 717 . . . . . . . . . . 11  |-  ( ( N  =  0  \/ 
-.  N  =  0 )  ->  ( (
( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
6123, 24, 603syl 17 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
6261anabsi7 581 . . . . . . . . 9  |-  ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
6321, 62sylan 283 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  M )  ||  N  <->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
64 absdvdsb 11991 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  N ) )
6564adantlr 477 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( abs `  M
)  ||  N )
)
66 zsqcl 10719 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
6766adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M ^ 2 )  e.  ZZ )
68 absdvdsb 11991 . . . . . . . . . 10  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  -> 
( ( M ^
2 )  ||  ( N ^ 2 )  <->  ( abs `  ( M ^ 2 ) )  ||  ( N ^ 2 ) ) )
6967, 10, 68syl2an 289 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( N ^ 2 )  <-> 
( abs `  ( M ^ 2 ) ) 
||  ( N ^
2 ) ) )
70 zcn 9348 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
71 abssq 11263 . . . . . . . . . . . . . 14  |-  ( M  e.  CC  ->  (
( abs `  M
) ^ 2 )  =  ( abs `  ( M ^ 2 ) ) )
7270, 71syl 14 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  (
( abs `  M
) ^ 2 )  =  ( abs `  ( M ^ 2 ) ) )
7372eqcomd 2202 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( abs `  ( M ^
2 ) )  =  ( ( abs `  M
) ^ 2 ) )
7473adantr 276 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  ( M ^ 2 ) )  =  ( ( abs `  M ) ^ 2 ) )
7574breq1d 4044 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( abs `  ( M ^ 2 ) ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
7675adantr 276 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  ( M ^ 2 ) )  ||  ( N ^ 2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
7769, 76bitrd 188 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( N ^ 2 )  <-> 
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
7863, 65, 773bitr4d 220 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) )
7978an32s 568 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  ||  N  <->  ( M ^
2 )  ||  ( N ^ 2 ) ) )
8079expcom 116 . . . . 5  |-  ( M  =/=  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8120, 80sylbir 135 . . . 4  |-  ( -.  M  =  0  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8219, 81jaoi 717 . . 3  |-  ( ( M  =  0  \/ 
-.  M  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
833, 4, 823syl 17 . 2  |-  ( M  e.  ZZ  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8483anabsi5 579 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   NNcn 9007   2c2 9058   ZZcz 9343   ^cexp 10647   abscabs 11179    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146
This theorem is referenced by:  pythagtriplem19  12476  4sqlem9  12580  4sqlem10  12581  lgsdir  15360  2sqlem8a  15447
  Copyright terms: Public domain W3C validator