ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssq Unicode version

Theorem dvdssq 12385
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )

Proof of Theorem dvdssq
StepHypRef Expression
1 0z 9385 . . . 4  |-  0  e.  ZZ
2 zdceq 9450 . . . 4  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
31, 2mpan2 425 . . 3  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
4 exmiddc 838 . . 3  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
5 0dvds 12155 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
6 zcn 9379 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 sqeq0 10749 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
( N ^ 2 )  =  0  <->  N  =  0 ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  =  0  <->  N  =  0 ) )
95, 8bitr4d 191 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  ( N ^ 2 )  =  0 ) )
10 zsqcl 10757 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
11 0dvds 12155 . . . . . . . 8  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
0  ||  ( N ^ 2 )  <->  ( N ^ 2 )  =  0 ) )
1210, 11syl 14 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  ||  ( N ^ 2 )  <->  ( N ^ 2 )  =  0 ) )
139, 12bitr4d 191 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  ||  ( N ^ 2 ) ) )
1413adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0 
||  ( N ^
2 ) ) )
15 breq1 4048 . . . . . 6  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
16 sq0i 10778 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ 2 )  =  0 )
1716breq1d 4055 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ 2 )  ||  ( N ^ 2 )  <->  0  ||  ( N ^ 2 ) ) )
1815, 17bibi12d 235 . . . . 5  |-  ( M  =  0  ->  (
( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) )  <->  ( 0 
||  N  <->  0  ||  ( N ^ 2 ) ) ) )
1914, 18imbitrrid 156 . . . 4  |-  ( M  =  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
20 df-ne 2377 . . . . 5  |-  ( M  =/=  0  <->  -.  M  =  0 )
21 nnabscl 11444 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
22 zdceq 9450 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
231, 22mpan2 425 . . . . . . . . . . 11  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
24 exmiddc 838 . . . . . . . . . . 11  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
25 nnz 9393 . . . . . . . . . . . . . . 15  |-  ( ( abs `  M )  e.  NN  ->  ( abs `  M )  e.  ZZ )
26 dvds0 12150 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  e.  ZZ  ->  ( abs `  M )  ||  0 )
27 zsqcl 10757 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) ^ 2 )  e.  ZZ )
28 dvds0 12150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
) ^ 2 )  e.  ZZ  ->  (
( abs `  M
) ^ 2 ) 
||  0 )
2927, 28syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
) ^ 2 ) 
||  0 )
3026, 292thd 175 . . . . . . . . . . . . . . 15  |-  ( ( abs `  M )  e.  ZZ  ->  (
( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3125, 30syl 14 . . . . . . . . . . . . . 14  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3231adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
33 breq2 4049 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  (
( abs `  M
)  ||  N  <->  ( abs `  M )  ||  0
) )
34 sq0i 10778 . . . . . . . . . . . . . . 15  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
3534breq2d 4057 . . . . . . . . . . . . . 14  |-  ( N  =  0  ->  (
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  0
) )
3633, 35bibi12d 235 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  (
( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) )  <-> 
( ( abs `  M
)  ||  0  <->  ( ( abs `  M ) ^
2 )  ||  0
) ) )
3732, 36imbitrrid 156 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
38 df-ne 2377 . . . . . . . . . . . . 13  |-  ( N  =/=  0  <->  -.  N  =  0 )
39 nnabscl 11444 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
40 dvdssqlem 12384 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( abs `  M
)  ||  ( abs `  N )  <->  ( ( abs `  M ) ^
2 )  ||  (
( abs `  N
) ^ 2 ) ) )
4139, 40sylan2 286 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  ( abs `  N )  <-> 
( ( abs `  M
) ^ 2 ) 
||  ( ( abs `  N ) ^ 2 ) ) )
42 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  ZZ )
43 dvdsabsb 12154 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( abs `  M )  ||  ( abs `  N ) ) )
4425, 42, 43syl2an 289 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  N 
<->  ( abs `  M
)  ||  ( abs `  N ) ) )
45 nnsqcl 10756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
) ^ 2 )  e.  NN )
4645nnzd 9496 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  M )  e.  NN  ->  (
( abs `  M
) ^ 2 )  e.  ZZ )
4710adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( N ^ 2 )  e.  ZZ )
48 dvdsabsb 12154 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( abs `  M
) ^ 2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  ->  (
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
4946, 47, 48syl2an 289 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
506adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
51 abssq 11425 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  CC  ->  (
( abs `  N
) ^ 2 )  =  ( abs `  ( N ^ 2 ) ) )
5250, 51syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
) ^ 2 )  =  ( abs `  ( N ^ 2 ) ) )
5352breq2d 4057 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  M ) ^ 2 )  ||  ( ( abs `  N ) ^ 2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( abs `  ( N ^
2 ) ) ) )
5453adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( ( abs `  N ) ^ 2 )  <->  ( ( abs `  M ) ^ 2 )  ||  ( abs `  ( N ^ 2 ) ) ) )
5549, 54bitr4d 191 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( (
( abs `  M
) ^ 2 ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  (
( abs `  N
) ^ 2 ) ) )
5641, 44, 553bitr4d 220 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( ( abs `  M )  ||  N 
<->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
5756anassrs 400 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( abs `  M )  ||  N 
<->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
5857expcom 116 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
5938, 58sylbir 135 . . . . . . . . . . . 12  |-  ( -.  N  =  0  -> 
( ( ( abs `  M )  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M )  ||  N  <->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) ) )
6037, 59jaoi 718 . . . . . . . . . . 11  |-  ( ( N  =  0  \/ 
-.  N  =  0 )  ->  ( (
( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
6123, 24, 603syl 17 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) ) )
6261anabsi7 581 . . . . . . . . 9  |-  ( ( ( abs `  M
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  ||  N  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
6321, 62sylan 283 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  M )  ||  N  <->  ( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
64 absdvdsb 12153 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( abs `  M ) 
||  N ) )
6564adantlr 477 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( abs `  M
)  ||  N )
)
66 zsqcl 10757 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
6766adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M ^ 2 )  e.  ZZ )
68 absdvdsb 12153 . . . . . . . . . 10  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  -> 
( ( M ^
2 )  ||  ( N ^ 2 )  <->  ( abs `  ( M ^ 2 ) )  ||  ( N ^ 2 ) ) )
6967, 10, 68syl2an 289 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( N ^ 2 )  <-> 
( abs `  ( M ^ 2 ) ) 
||  ( N ^
2 ) ) )
70 zcn 9379 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
71 abssq 11425 . . . . . . . . . . . . . 14  |-  ( M  e.  CC  ->  (
( abs `  M
) ^ 2 )  =  ( abs `  ( M ^ 2 ) ) )
7270, 71syl 14 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  (
( abs `  M
) ^ 2 )  =  ( abs `  ( M ^ 2 ) ) )
7372eqcomd 2211 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( abs `  ( M ^
2 ) )  =  ( ( abs `  M
) ^ 2 ) )
7473adantr 276 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  ( M ^ 2 ) )  =  ( ( abs `  M ) ^ 2 ) )
7574breq1d 4055 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( ( abs `  ( M ^ 2 ) ) 
||  ( N ^
2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
7675adantr 276 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  ( M ^ 2 ) )  ||  ( N ^ 2 )  <->  ( ( abs `  M ) ^
2 )  ||  ( N ^ 2 ) ) )
7769, 76bitrd 188 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( N ^ 2 )  <-> 
( ( abs `  M
) ^ 2 ) 
||  ( N ^
2 ) ) )
7863, 65, 773bitr4d 220 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) )
7978an32s 568 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  ||  N  <->  ( M ^
2 )  ||  ( N ^ 2 ) ) )
8079expcom 116 . . . . 5  |-  ( M  =/=  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8120, 80sylbir 135 . . . 4  |-  ( -.  M  =  0  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8219, 81jaoi 718 . . 3  |-  ( ( M  =  0  \/ 
-.  M  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
833, 4, 823syl 17 . 2  |-  ( M  e.  ZZ  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
<->  ( M ^ 2 )  ||  ( N ^ 2 ) ) ) )
8483anabsi5 579 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   0cc0 7927   NNcn 9038   2c2 9089   ZZcz 9374   ^cexp 10685   abscabs 11341    || cdvds 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308
This theorem is referenced by:  pythagtriplem19  12638  4sqlem9  12742  4sqlem10  12743  lgsdir  15545  2sqlem8a  15632
  Copyright terms: Public domain W3C validator