ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooneg Unicode version

Theorem iooneg 10080
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 8506 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A
) )
213adant2 1018 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A ) )
3 ltneg 8506 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
43ancoms 268 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
543adant1 1017 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C ) )
62, 5anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u C  <  -u A  /\  -u B  <  -u C
) ) )
7 ancom 266 . . 3  |-  ( (
-u C  <  -u A  /\  -u B  <  -u C
)  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) )
86, 7bitrdi 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u B  <  -u C  /\  -u C  <  -u A
) ) )
9 rexr 8089 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
10 rexr 8089 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
11 rexr 8089 . . 3  |-  ( C  e.  RR  ->  C  e.  RR* )
12 elioo5 10025 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
139, 10, 11, 12syl3an 1291 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
14 renegcl 8304 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
15 renegcl 8304 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
16 renegcl 8304 . . . 4  |-  ( C  e.  RR  ->  -u C  e.  RR )
17 rexr 8089 . . . . 5  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
18 rexr 8089 . . . . 5  |-  ( -u A  e.  RR  ->  -u A  e.  RR* )
19 rexr 8089 . . . . 5  |-  ( -u C  e.  RR  ->  -u C  e.  RR* )
20 elioo5 10025 . . . . 5  |-  ( (
-u B  e.  RR*  /\  -u A  e.  RR*  /\  -u C  e.  RR* )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2117, 18, 19, 20syl3an 1291 . . . 4  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR  /\  -u C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2214, 15, 16, 21syl3an 1291 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
23223com12 1209 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
248, 13, 233bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   RR*cxr 8077    < clt 8078   -ucneg 8215   (,)cioo 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-sub 8216  df-neg 8217  df-ioo 9984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator