ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooneg Unicode version

Theorem iooneg 9764
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 8217 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A
) )
213adant2 1000 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A ) )
3 ltneg 8217 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
43ancoms 266 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
543adant1 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C ) )
62, 5anbi12d 464 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u C  <  -u A  /\  -u B  <  -u C
) ) )
7 ancom 264 . . 3  |-  ( (
-u C  <  -u A  /\  -u B  <  -u C
)  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) )
86, 7syl6bb 195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u B  <  -u C  /\  -u C  <  -u A
) ) )
9 rexr 7804 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
10 rexr 7804 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
11 rexr 7804 . . 3  |-  ( C  e.  RR  ->  C  e.  RR* )
12 elioo5 9709 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
139, 10, 11, 12syl3an 1258 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
14 renegcl 8016 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
15 renegcl 8016 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
16 renegcl 8016 . . . 4  |-  ( C  e.  RR  ->  -u C  e.  RR )
17 rexr 7804 . . . . 5  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
18 rexr 7804 . . . . 5  |-  ( -u A  e.  RR  ->  -u A  e.  RR* )
19 rexr 7804 . . . . 5  |-  ( -u C  e.  RR  ->  -u C  e.  RR* )
20 elioo5 9709 . . . . 5  |-  ( (
-u B  e.  RR*  /\  -u A  e.  RR*  /\  -u C  e.  RR* )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2117, 18, 19, 20syl3an 1258 . . . 4  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR  /\  -u C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2214, 15, 16, 21syl3an 1258 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
23223com12 1185 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
248, 13, 233bitr4d 219 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   RR*cxr 7792    < clt 7793   -ucneg 7927   (,)cioo 9664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-sub 7928  df-neg 7929  df-ioo 9668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator