ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooneg Unicode version

Theorem iooneg 9945
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 8381 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A
) )
213adant2 1011 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A ) )
3 ltneg 8381 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
43ancoms 266 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
543adant1 1010 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C ) )
62, 5anbi12d 470 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u C  <  -u A  /\  -u B  <  -u C
) ) )
7 ancom 264 . . 3  |-  ( (
-u C  <  -u A  /\  -u B  <  -u C
)  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) )
86, 7bitrdi 195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u B  <  -u C  /\  -u C  <  -u A
) ) )
9 rexr 7965 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
10 rexr 7965 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
11 rexr 7965 . . 3  |-  ( C  e.  RR  ->  C  e.  RR* )
12 elioo5 9890 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
139, 10, 11, 12syl3an 1275 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
14 renegcl 8180 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
15 renegcl 8180 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
16 renegcl 8180 . . . 4  |-  ( C  e.  RR  ->  -u C  e.  RR )
17 rexr 7965 . . . . 5  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
18 rexr 7965 . . . . 5  |-  ( -u A  e.  RR  ->  -u A  e.  RR* )
19 rexr 7965 . . . . 5  |-  ( -u C  e.  RR  ->  -u C  e.  RR* )
20 elioo5 9890 . . . . 5  |-  ( (
-u B  e.  RR*  /\  -u A  e.  RR*  /\  -u C  e.  RR* )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2117, 18, 19, 20syl3an 1275 . . . 4  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR  /\  -u C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2214, 15, 16, 21syl3an 1275 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
23223com12 1202 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
248, 13, 233bitr4d 219 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   RR*cxr 7953    < clt 7954   -ucneg 8091   (,)cioo 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-sub 8092  df-neg 8093  df-ioo 9849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator