ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooneg Unicode version

Theorem iooneg 10145
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 8570 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A
) )
213adant2 1019 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A ) )
3 ltneg 8570 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
43ancoms 268 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C
) )
543adant1 1018 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  -u B  <  -u C ) )
62, 5anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u C  <  -u A  /\  -u B  <  -u C
) ) )
7 ancom 266 . . 3  |-  ( (
-u C  <  -u A  /\  -u B  <  -u C
)  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) )
86, 7bitrdi 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  /\  C  <  B )  <-> 
( -u B  <  -u C  /\  -u C  <  -u A
) ) )
9 rexr 8153 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
10 rexr 8153 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
11 rexr 8153 . . 3  |-  ( C  e.  RR  ->  C  e.  RR* )
12 elioo5 10090 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
139, 10, 11, 12syl3an 1292 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C  /\  C  < 
B ) ) )
14 renegcl 8368 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
15 renegcl 8368 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
16 renegcl 8368 . . . 4  |-  ( C  e.  RR  ->  -u C  e.  RR )
17 rexr 8153 . . . . 5  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
18 rexr 8153 . . . . 5  |-  ( -u A  e.  RR  ->  -u A  e.  RR* )
19 rexr 8153 . . . . 5  |-  ( -u C  e.  RR  ->  -u C  e.  RR* )
20 elioo5 10090 . . . . 5  |-  ( (
-u B  e.  RR*  /\  -u A  e.  RR*  /\  -u C  e.  RR* )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2117, 18, 19, 20syl3an 1292 . . . 4  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR  /\  -u C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
2214, 15, 16, 21syl3an 1292 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
23223com12 1210 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B (,) -u A )  <->  ( -u B  <  -u C  /\  -u C  <  -u A ) ) )
248, 13, 233bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959   RR*cxr 8141    < clt 8142   -ucneg 8279   (,)cioo 10045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-sub 8280  df-neg 8281  df-ioo 10049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator