ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div23ap Unicode version

Theorem div23ap 8579
Description: A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
div23ap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  B )  /  C
)  =  ( ( A  /  C )  x.  B ) )

Proof of Theorem div23ap
StepHypRef Expression
1 mulcom 7874 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
21oveq1d 5852 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  /  C
)  =  ( ( B  x.  A )  /  C ) )
323adant3 1006 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  B )  /  C
)  =  ( ( B  x.  A )  /  C ) )
4 divassap 8578 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  A )  /  C
)  =  ( B  x.  ( A  /  C ) ) )
543com12 1196 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  A )  /  C
)  =  ( B  x.  ( A  /  C ) ) )
6 simp2 987 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
7 divclap 8566 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
873expb 1193 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  /  C )  e.  CC )
983adant2 1005 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  /  C
)  e.  CC )
106, 9mulcomd 7912 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  ( A  /  C ) )  =  ( ( A  /  C )  x.  B ) )
113, 5, 103eqtrd 2201 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  B )  /  C
)  =  ( ( A  /  C )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3977  (class class class)co 5837   CCcc 7743   0cc0 7745    x. cmul 7750   # cap 8471    / cdiv 8560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-id 4266  df-po 4269  df-iso 4270  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-iota 5148  df-fun 5185  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561
This theorem is referenced by:  div32ap  8580  div13ap  8581  divdiv32ap  8608  dmdcanap  8610  div23api  8658  div23apd  8716
  Copyright terms: Public domain W3C validator