ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remulext1 Unicode version

Theorem remulext1 8626
Description: Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
Assertion
Ref Expression
remulext1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )

Proof of Theorem remulext1
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2 simp3 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
31, 2remulcld 8057 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
4 simp2 1000 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
54, 2remulcld 8057 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  e.  RR )
6 reaplt 8615 . . 3  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
73, 5, 6syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
8 ax-pre-mulext 7997 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
9 ltxrlt 8092 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C )  < 
( B  x.  C
)  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
103, 5, 9syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
11 reaplt 8615 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
121, 4, 11syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
13 ltxrlt 8092 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
141, 4, 13syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
15 ltxrlt 8092 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
164, 1, 15syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  B  <RR  A ) )
1714, 16orbi12d 794 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  \/  B  <  A )  <-> 
( A  <RR  B  \/  B  <RR  A ) ) )
1812, 17bitrd 188 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
198, 10, 183imtr4d 203 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A #  B ) )
20 ax-pre-mulext 7997 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <RR  ( A  x.  C )  ->  ( B  <RR  A  \/  A  <RR  B ) ) )
21203com12 1209 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <RR  ( A  x.  C )  ->  ( B  <RR  A  \/  A  <RR  B ) ) )
22 ltxrlt 8092 . . . . 5  |-  ( ( ( B  x.  C
)  e.  RR  /\  ( A  x.  C
)  e.  RR )  ->  ( ( B  x.  C )  < 
( A  x.  C
)  <->  ( B  x.  C )  <RR  ( A  x.  C ) ) )
235, 3, 22syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <  ( A  x.  C )  <->  ( B  x.  C )  <RR  ( A  x.  C ) ) )
24 orcom 729 . . . . 5  |-  ( ( A  <RR  B  \/  B  <RR  A )  <->  ( B  <RR  A  \/  A  <RR  B ) )
2518, 24bitrdi 196 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( B  <RR  A  \/  A  <RR  B ) ) )
2621, 23, 253imtr4d 203 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <  ( A  x.  C )  ->  A #  B ) )
2719, 26jaod 718 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) )  ->  A #  B ) )
287, 27sylbid 150 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878    <RR cltrr 7883    x. cmul 7884    < clt 8061   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  remulext2  8627  mulext1  8639
  Copyright terms: Public domain W3C validator