ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remulext1 Unicode version

Theorem remulext1 8497
Description: Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
Assertion
Ref Expression
remulext1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )

Proof of Theorem remulext1
StepHypRef Expression
1 simp1 987 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2 simp3 989 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
31, 2remulcld 7929 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
4 simp2 988 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
54, 2remulcld 7929 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  e.  RR )
6 reaplt 8486 . . 3  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
73, 5, 6syl2anc 409 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
8 ax-pre-mulext 7871 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
9 ltxrlt 7964 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C )  < 
( B  x.  C
)  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
103, 5, 9syl2anc 409 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
11 reaplt 8486 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
121, 4, 11syl2anc 409 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
13 ltxrlt 7964 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
141, 4, 13syl2anc 409 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
15 ltxrlt 7964 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
164, 1, 15syl2anc 409 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  B  <RR  A ) )
1714, 16orbi12d 783 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  \/  B  <  A )  <-> 
( A  <RR  B  \/  B  <RR  A ) ) )
1812, 17bitrd 187 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
198, 10, 183imtr4d 202 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A #  B ) )
20 ax-pre-mulext 7871 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <RR  ( A  x.  C )  ->  ( B  <RR  A  \/  A  <RR  B ) ) )
21203com12 1197 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <RR  ( A  x.  C )  ->  ( B  <RR  A  \/  A  <RR  B ) ) )
22 ltxrlt 7964 . . . . 5  |-  ( ( ( B  x.  C
)  e.  RR  /\  ( A  x.  C
)  e.  RR )  ->  ( ( B  x.  C )  < 
( A  x.  C
)  <->  ( B  x.  C )  <RR  ( A  x.  C ) ) )
235, 3, 22syl2anc 409 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <  ( A  x.  C )  <->  ( B  x.  C )  <RR  ( A  x.  C ) ) )
24 orcom 718 . . . . 5  |-  ( ( A  <RR  B  \/  B  <RR  A )  <->  ( B  <RR  A  \/  A  <RR  B ) )
2518, 24bitrdi 195 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( B  <RR  A  \/  A  <RR  B ) ) )
2621, 23, 253imtr4d 202 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <  ( A  x.  C )  ->  A #  B ) )
2719, 26jaod 707 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) )  ->  A #  B ) )
287, 27sylbid 149 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752    <RR cltrr 7757    x. cmul 7758    < clt 7933   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  remulext2  8498  mulext1  8510
  Copyright terms: Public domain W3C validator