ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remulext1 Unicode version

Theorem remulext1 8558
Description: Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
Assertion
Ref Expression
remulext1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )

Proof of Theorem remulext1
StepHypRef Expression
1 simp1 997 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2 simp3 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
31, 2remulcld 7990 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
4 simp2 998 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
54, 2remulcld 7990 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  e.  RR )
6 reaplt 8547 . . 3  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
73, 5, 6syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
8 ax-pre-mulext 7931 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
9 ltxrlt 8025 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C )  < 
( B  x.  C
)  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
103, 5, 9syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( A  x.  C )  <RR  ( B  x.  C ) ) )
11 reaplt 8547 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
121, 4, 11syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
13 ltxrlt 8025 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
141, 4, 13syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
15 ltxrlt 8025 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
164, 1, 15syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  B  <RR  A ) )
1714, 16orbi12d 793 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  \/  B  <  A )  <-> 
( A  <RR  B  \/  B  <RR  A ) ) )
1812, 17bitrd 188 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
198, 10, 183imtr4d 203 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A #  B ) )
20 ax-pre-mulext 7931 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <RR  ( A  x.  C )  ->  ( B  <RR  A  \/  A  <RR  B ) ) )
21203com12 1207 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <RR  ( A  x.  C )  ->  ( B  <RR  A  \/  A  <RR  B ) ) )
22 ltxrlt 8025 . . . . 5  |-  ( ( ( B  x.  C
)  e.  RR  /\  ( A  x.  C
)  e.  RR )  ->  ( ( B  x.  C )  < 
( A  x.  C
)  <->  ( B  x.  C )  <RR  ( A  x.  C ) ) )
235, 3, 22syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <  ( A  x.  C )  <->  ( B  x.  C )  <RR  ( A  x.  C ) ) )
24 orcom 728 . . . . 5  |-  ( ( A  <RR  B  \/  B  <RR  A )  <->  ( B  <RR  A  \/  A  <RR  B ) )
2518, 24bitrdi 196 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( B  <RR  A  \/  A  <RR  B ) ) )
2621, 23, 253imtr4d 203 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  x.  C
)  <  ( A  x.  C )  ->  A #  B ) )
2719, 26jaod 717 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) )  ->  A #  B ) )
287, 27sylbid 150 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 708    /\ w3a 978    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RRcr 7812    <RR cltrr 7817    x. cmul 7818    < clt 7994   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by:  remulext2  8559  mulext1  8571
  Copyright terms: Public domain W3C validator