ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlin Unicode version

Theorem mhmlin 12858
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b  |-  B  =  ( Base `  S
)
mhmlin.p  |-  .+  =  ( +g  `  S )
mhmlin.q  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
mhmlin  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )

Proof of Theorem mhmlin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6  |-  B  =  ( Base `  S
)
2 eqid 2177 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 mhmlin.p . . . . . 6  |-  .+  =  ( +g  `  S )
4 mhmlin.q . . . . . 6  |-  .+^  =  ( +g  `  T )
5 eqid 2177 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 eqid 2177 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
71, 2, 3, 4, 5, 6ismhm 12853 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> ( Base `  T )  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  S ) )  =  ( 0g
`  T ) ) ) )
87simprbi 275 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  ( F : B --> ( Base `  T
)  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
98simp2d 1010 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
10 fvoveq1 5898 . . . . 5  |-  ( x  =  X  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( X  .+  y ) ) )
11 fveq2 5516 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
1211oveq1d 5890 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 y ) ) )
1310, 12eqeq12d 2192 . . . 4  |-  ( x  =  X  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( X  .+  y
) )  =  ( ( F `  X
)  .+^  ( F `  y ) ) ) )
14 oveq2 5883 . . . . . 6  |-  ( y  =  Y  ->  ( X  .+  y )  =  ( X  .+  Y
) )
1514fveq2d 5520 . . . . 5  |-  ( y  =  Y  ->  ( F `  ( X  .+  y ) )  =  ( F `  ( X  .+  Y ) ) )
16 fveq2 5516 . . . . . 6  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
1716oveq2d 5891 . . . . 5  |-  ( y  =  Y  ->  (
( F `  X
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
1815, 17eqeq12d 2192 . . . 4  |-  ( y  =  Y  ->  (
( F `  ( X  .+  y ) )  =  ( ( F `
 X )  .+^  ( F `  y ) )  <->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X ) 
.+^  ( F `  Y ) ) ) )
1913, 18rspc2v 2855 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  -> 
( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
209, 19syl5com 29 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
21203impib 1201 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   -->wf 5213   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   0gc0g 12705   Mndcmnd 12817   MndHom cmhm 12849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-inn 8920  df-ndx 12465  df-slot 12466  df-base 12468  df-mhm 12851
This theorem is referenced by:  mhmf1o  12861  mhmco  12874  mhmima  12875  mhmeql  12876  mhmmulg  13024
  Copyright terms: Public domain W3C validator