ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlin Unicode version

Theorem mhmlin 13374
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b  |-  B  =  ( Base `  S
)
mhmlin.p  |-  .+  =  ( +g  `  S )
mhmlin.q  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
mhmlin  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )

Proof of Theorem mhmlin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6  |-  B  =  ( Base `  S
)
2 eqid 2206 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 mhmlin.p . . . . . 6  |-  .+  =  ( +g  `  S )
4 mhmlin.q . . . . . 6  |-  .+^  =  ( +g  `  T )
5 eqid 2206 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 eqid 2206 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
71, 2, 3, 4, 5, 6ismhm 13368 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> ( Base `  T )  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  S ) )  =  ( 0g
`  T ) ) ) )
87simprbi 275 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  ( F : B --> ( Base `  T
)  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
98simp2d 1013 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
10 fvoveq1 5980 . . . . 5  |-  ( x  =  X  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( X  .+  y ) ) )
11 fveq2 5589 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
1211oveq1d 5972 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 y ) ) )
1310, 12eqeq12d 2221 . . . 4  |-  ( x  =  X  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( X  .+  y
) )  =  ( ( F `  X
)  .+^  ( F `  y ) ) ) )
14 oveq2 5965 . . . . . 6  |-  ( y  =  Y  ->  ( X  .+  y )  =  ( X  .+  Y
) )
1514fveq2d 5593 . . . . 5  |-  ( y  =  Y  ->  ( F `  ( X  .+  y ) )  =  ( F `  ( X  .+  Y ) ) )
16 fveq2 5589 . . . . . 6  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
1716oveq2d 5973 . . . . 5  |-  ( y  =  Y  ->  (
( F `  X
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
1815, 17eqeq12d 2221 . . . 4  |-  ( y  =  Y  ->  (
( F `  ( X  .+  y ) )  =  ( ( F `
 X )  .+^  ( F `  y ) )  <->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X ) 
.+^  ( F `  Y ) ) ) )
1913, 18rspc2v 2894 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  -> 
( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
209, 19syl5com 29 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
21203impib 1204 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   -->wf 5276   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Mndcmnd 13323   MndHom cmhm 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-mhm 13366
This theorem is referenced by:  mhmf1o  13377  resmhm  13394  resmhm2  13395  resmhm2b  13396  mhmco  13397  mhmima  13398  mhmeql  13399  gsumwmhm  13405  mhmmulg  13574  ghmmhmb  13665  gsumfzmhm  13754  rhmmul  14001
  Copyright terms: Public domain W3C validator