Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mhmlin | Unicode version |
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmlin.b | |
mhmlin.p | |
mhmlin.q |
Ref | Expression |
---|---|
mhmlin | MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmlin.b | . . . . . 6 | |
2 | eqid 2175 | . . . . . 6 | |
3 | mhmlin.p | . . . . . 6 | |
4 | mhmlin.q | . . . . . 6 | |
5 | eqid 2175 | . . . . . 6 | |
6 | eqid 2175 | . . . . . 6 | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 12716 | . . . . 5 MndHom |
8 | 7 | simprbi 275 | . . . 4 MndHom |
9 | 8 | simp2d 1010 | . . 3 MndHom |
10 | fvoveq1 5888 | . . . . 5 | |
11 | fveq2 5507 | . . . . . 6 | |
12 | 11 | oveq1d 5880 | . . . . 5 |
13 | 10, 12 | eqeq12d 2190 | . . . 4 |
14 | oveq2 5873 | . . . . . 6 | |
15 | 14 | fveq2d 5511 | . . . . 5 |
16 | fveq2 5507 | . . . . . 6 | |
17 | 16 | oveq2d 5881 | . . . . 5 |
18 | 15, 17 | eqeq12d 2190 | . . . 4 |
19 | 13, 18 | rspc2v 2852 | . . 3 |
20 | 9, 19 | syl5com 29 | . 2 MndHom |
21 | 20 | 3impib 1201 | 1 MndHom |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 wf 5204 cfv 5208 (class class class)co 5865 cbs 12429 cplusg 12493 c0g 12627 cmnd 12683 MndHom cmhm 12712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-inn 8893 df-ndx 12432 df-slot 12433 df-base 12435 df-mhm 12714 |
This theorem is referenced by: mhmf1o 12724 mhmco 12736 mhmima 12737 mhmeql 12738 mhmmulg 12884 |
Copyright terms: Public domain | W3C validator |