ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlin Unicode version

Theorem mhmlin 12721
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b  |-  B  =  ( Base `  S
)
mhmlin.p  |-  .+  =  ( +g  `  S )
mhmlin.q  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
mhmlin  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )

Proof of Theorem mhmlin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6  |-  B  =  ( Base `  S
)
2 eqid 2175 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 mhmlin.p . . . . . 6  |-  .+  =  ( +g  `  S )
4 mhmlin.q . . . . . 6  |-  .+^  =  ( +g  `  T )
5 eqid 2175 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 eqid 2175 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
71, 2, 3, 4, 5, 6ismhm 12716 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> ( Base `  T )  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  S ) )  =  ( 0g
`  T ) ) ) )
87simprbi 275 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  ( F : B --> ( Base `  T
)  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
98simp2d 1010 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
10 fvoveq1 5888 . . . . 5  |-  ( x  =  X  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( X  .+  y ) ) )
11 fveq2 5507 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
1211oveq1d 5880 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 y ) ) )
1310, 12eqeq12d 2190 . . . 4  |-  ( x  =  X  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( X  .+  y
) )  =  ( ( F `  X
)  .+^  ( F `  y ) ) ) )
14 oveq2 5873 . . . . . 6  |-  ( y  =  Y  ->  ( X  .+  y )  =  ( X  .+  Y
) )
1514fveq2d 5511 . . . . 5  |-  ( y  =  Y  ->  ( F `  ( X  .+  y ) )  =  ( F `  ( X  .+  Y ) ) )
16 fveq2 5507 . . . . . 6  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
1716oveq2d 5881 . . . . 5  |-  ( y  =  Y  ->  (
( F `  X
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
1815, 17eqeq12d 2190 . . . 4  |-  ( y  =  Y  ->  (
( F `  ( X  .+  y ) )  =  ( ( F `
 X )  .+^  ( F `  y ) )  <->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X ) 
.+^  ( F `  Y ) ) ) )
1913, 18rspc2v 2852 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  -> 
( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
209, 19syl5com 29 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
21203impib 1201 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   -->wf 5204   ` cfv 5208  (class class class)co 5865   Basecbs 12429   +g cplusg 12493   0gc0g 12627   Mndcmnd 12683   MndHom cmhm 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-inn 8893  df-ndx 12432  df-slot 12433  df-base 12435  df-mhm 12714
This theorem is referenced by:  mhmf1o  12724  mhmco  12736  mhmima  12737  mhmeql  12738  mhmmulg  12884
  Copyright terms: Public domain W3C validator