ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmlin Unicode version

Theorem mhmlin 13039
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b  |-  B  =  ( Base `  S
)
mhmlin.p  |-  .+  =  ( +g  `  S )
mhmlin.q  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
mhmlin  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )

Proof of Theorem mhmlin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6  |-  B  =  ( Base `  S
)
2 eqid 2193 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 mhmlin.p . . . . . 6  |-  .+  =  ( +g  `  S )
4 mhmlin.q . . . . . 6  |-  .+^  =  ( +g  `  T )
5 eqid 2193 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 eqid 2193 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
71, 2, 3, 4, 5, 6ismhm 13033 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> ( Base `  T )  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  S ) )  =  ( 0g
`  T ) ) ) )
87simprbi 275 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  ( F : B --> ( Base `  T
)  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
98simp2d 1012 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
10 fvoveq1 5941 . . . . 5  |-  ( x  =  X  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( X  .+  y ) ) )
11 fveq2 5554 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
1211oveq1d 5933 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 y ) ) )
1310, 12eqeq12d 2208 . . . 4  |-  ( x  =  X  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( X  .+  y
) )  =  ( ( F `  X
)  .+^  ( F `  y ) ) ) )
14 oveq2 5926 . . . . . 6  |-  ( y  =  Y  ->  ( X  .+  y )  =  ( X  .+  Y
) )
1514fveq2d 5558 . . . . 5  |-  ( y  =  Y  ->  ( F `  ( X  .+  y ) )  =  ( F `  ( X  .+  Y ) ) )
16 fveq2 5554 . . . . . 6  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
1716oveq2d 5934 . . . . 5  |-  ( y  =  Y  ->  (
( F `  X
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
1815, 17eqeq12d 2208 . . . 4  |-  ( y  =  Y  ->  (
( F `  ( X  .+  y ) )  =  ( ( F `
 X )  .+^  ( F `  y ) )  <->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X ) 
.+^  ( F `  Y ) ) ) )
1913, 18rspc2v 2877 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  -> 
( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
209, 19syl5com 29 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
21203impib 1203 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   -->wf 5250   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997   MndHom cmhm 13029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-mhm 13031
This theorem is referenced by:  mhmf1o  13042  resmhm  13059  resmhm2  13060  resmhm2b  13061  mhmco  13062  mhmima  13063  mhmeql  13064  gsumwmhm  13070  mhmmulg  13233  ghmmhmb  13324  gsumfzmhm  13413  rhmmul  13660
  Copyright terms: Public domain W3C validator