| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmlin | Unicode version | ||
| Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmlin.b |
|
| mhmlin.p |
|
| mhmlin.q |
|
| Ref | Expression |
|---|---|
| mhmlin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmlin.b |
. . . . . 6
| |
| 2 | eqid 2204 |
. . . . . 6
| |
| 3 | mhmlin.p |
. . . . . 6
| |
| 4 | mhmlin.q |
. . . . . 6
| |
| 5 | eqid 2204 |
. . . . . 6
| |
| 6 | eqid 2204 |
. . . . . 6
| |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 13235 |
. . . . 5
|
| 8 | 7 | simprbi 275 |
. . . 4
|
| 9 | 8 | simp2d 1012 |
. . 3
|
| 10 | fvoveq1 5966 |
. . . . 5
| |
| 11 | fveq2 5575 |
. . . . . 6
| |
| 12 | 11 | oveq1d 5958 |
. . . . 5
|
| 13 | 10, 12 | eqeq12d 2219 |
. . . 4
|
| 14 | oveq2 5951 |
. . . . . 6
| |
| 15 | 14 | fveq2d 5579 |
. . . . 5
|
| 16 | fveq2 5575 |
. . . . . 6
| |
| 17 | 16 | oveq2d 5959 |
. . . . 5
|
| 18 | 15, 17 | eqeq12d 2219 |
. . . 4
|
| 19 | 13, 18 | rspc2v 2889 |
. . 3
|
| 20 | 9, 19 | syl5com 29 |
. 2
|
| 21 | 20 | 3impib 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-map 6736 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 df-mhm 13233 |
| This theorem is referenced by: mhmf1o 13244 resmhm 13261 resmhm2 13262 resmhm2b 13263 mhmco 13264 mhmima 13265 mhmeql 13266 gsumwmhm 13272 mhmmulg 13441 ghmmhmb 13532 gsumfzmhm 13621 rhmmul 13868 |
| Copyright terms: Public domain | W3C validator |