ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdifd Unicode version

Theorem posdifd 8553
Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
posdifd  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )

Proof of Theorem posdifd
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 posdif 8476 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   RRcr 7873   0cc0 7874    < clt 8056    - cmin 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-sub 8194  df-neg 8195
This theorem is referenced by:  possumd  8590  ltmul1a  8612  ztri3or  9363  qbtwnre  10328  expnbnd  10737  resqrexlemover  11157  fsumlt  11610  cvgratnnlembern  11669  cvgratnnlemsumlt  11674  cvgratnnlemfm  11675  cvgratnnlemrate  11676  cvgratnn  11677  sin01gt0  11908  cos12dec  11914  nno  12050  pythagtriplem10  12410  ivthinclemlopn  14815  ivthinclemuopn  14817  ivthreinc  14824  sin0pilem1  14957  cosordlem  15025  cosq34lt1  15026  lgsquadlem1  15234  iooref1o  15594  trilpolemlt1  15601  trirec0  15604
  Copyright terms: Public domain W3C validator