ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 Unicode version

Theorem resqrexlemcalc2 11162
Description: Lemma for resqrex 11173. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcalc1 11161 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
51, 2, 3resqrexlemf 11154 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
65ffvelcdmda 5694 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
76rpred 9765 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
87resqcld 10773 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR )
92adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
108, 9resubcld 8402 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR )
116rpap0d 9771 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
127, 11sqgt0apd 10775 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( ( F `  N ) ^ 2 ) )
138, 12elrpd 9762 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
148, 9readdcld 8051 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  A )  e.  RR )
153adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
168, 9addge01d 8554 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 0  <_  A  <->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) ) )
1715, 16mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) )
188, 14, 9, 17lesub1dd 8582 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  +  A )  -  A
) )
198recnd 8050 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
209recnd 8050 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
2119, 20pncand 8333 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  A )  -  A )  =  ( ( F `  N ) ^ 2 ) )
2218, 21breqtrd 4056 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( F `  N ) ^ 2 ) )
2310, 8, 13, 22lediv1dd 9824 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
( ( ( F `
 N ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
248, 12gt0ap0d 8650 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
2519, 24dividapd 8807 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  /  ( ( F `
 N ) ^
2 ) )  =  1 )
2623, 25breqtrd 4056 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
1 )
2710, 8, 24redivclapd 8856 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  e.  RR )
28 1red 8036 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
291, 2, 3resqrexlemover 11157 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N ) ^ 2 ) )
30 difrp 9761 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( F `  N ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  N ) ^ 2 )  <->  ( ( ( F `  N ) ^ 2 )  -  A )  e.  RR+ ) )
319, 8, 30syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  <  ( ( F `
 N ) ^
2 )  <->  ( (
( F `  N
) ^ 2 )  -  A )  e.  RR+ ) )
3229, 31mpbid 147 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR+ )
33 4re 9061 . . . . . . . 8  |-  4  e.  RR
3433a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
35 4pos 9081 . . . . . . . 8  |-  0  <  4
3635a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
3734, 36elrpd 9762 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR+ )
3832, 37rpdivcld 9783 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  RR+ )
3927, 28, 38lemul1d 9809 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  <_  1  <->  ( (
( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) ) )
4026, 39mpbid 147 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) )
4110recnd 8050 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
4234recnd 8050 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
4334, 36gt0ap0d 8650 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
4441, 19, 41, 42, 24, 43divmuldivapd 8853 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4541sqvald 10744 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  x.  (
( ( F `  N ) ^ 2 )  -  A ) ) )
4642, 19mulcomd 8043 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( F `
 N ) ^
2 )  x.  4 ) )
4745, 46oveq12d 5937 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4844, 47eqtr4d 2229 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
4938rpcnd 9767 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  CC )
5049mulid2d 8040 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
5140, 48, 503brtr3d 4061 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
524, 51eqbrtrd 4052 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {csn 3619   class class class wbr 4030    X. cxp 4658   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192    / cdiv 8693   NNcn 8984   2c2 9035   4c4 9037   RR+crp 9722    seqcseq 10521   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  resqrexlemcalc3  11163
  Copyright terms: Public domain W3C validator