ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 Unicode version

Theorem resqrexlemcalc2 11441
Description: Lemma for resqrex 11452. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcalc1 11440 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
51, 2, 3resqrexlemf 11433 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
65ffvelcdmda 5738 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
76rpred 9853 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
87resqcld 10881 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR )
92adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
108, 9resubcld 8488 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR )
116rpap0d 9859 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
127, 11sqgt0apd 10883 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( ( F `  N ) ^ 2 ) )
138, 12elrpd 9850 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
148, 9readdcld 8137 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  A )  e.  RR )
153adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
168, 9addge01d 8641 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 0  <_  A  <->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) ) )
1715, 16mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) )
188, 14, 9, 17lesub1dd 8669 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  +  A )  -  A
) )
198recnd 8136 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
209recnd 8136 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
2119, 20pncand 8419 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  A )  -  A )  =  ( ( F `  N ) ^ 2 ) )
2218, 21breqtrd 4085 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( F `  N ) ^ 2 ) )
2310, 8, 13, 22lediv1dd 9912 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
( ( ( F `
 N ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
248, 12gt0ap0d 8737 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
2519, 24dividapd 8894 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  /  ( ( F `
 N ) ^
2 ) )  =  1 )
2623, 25breqtrd 4085 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
1 )
2710, 8, 24redivclapd 8943 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  e.  RR )
28 1red 8122 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
291, 2, 3resqrexlemover 11436 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N ) ^ 2 ) )
30 difrp 9849 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( F `  N ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  N ) ^ 2 )  <->  ( ( ( F `  N ) ^ 2 )  -  A )  e.  RR+ ) )
319, 8, 30syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  <  ( ( F `
 N ) ^
2 )  <->  ( (
( F `  N
) ^ 2 )  -  A )  e.  RR+ ) )
3229, 31mpbid 147 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR+ )
33 4re 9148 . . . . . . . 8  |-  4  e.  RR
3433a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
35 4pos 9168 . . . . . . . 8  |-  0  <  4
3635a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
3734, 36elrpd 9850 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR+ )
3832, 37rpdivcld 9871 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  RR+ )
3927, 28, 38lemul1d 9897 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  <_  1  <->  ( (
( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) ) )
4026, 39mpbid 147 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) )
4110recnd 8136 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
4234recnd 8136 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
4334, 36gt0ap0d 8737 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
4441, 19, 41, 42, 24, 43divmuldivapd 8940 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4541sqvald 10852 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  x.  (
( ( F `  N ) ^ 2 )  -  A ) ) )
4642, 19mulcomd 8129 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( F `
 N ) ^
2 )  x.  4 ) )
4745, 46oveq12d 5985 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4844, 47eqtr4d 2243 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
4938rpcnd 9855 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  CC )
5049mulid2d 8126 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
5140, 48, 503brtr3d 4090 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
524, 51eqbrtrd 4081 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {csn 3643   class class class wbr 4059    X. cxp 4691   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278    / cdiv 8780   NNcn 9071   2c2 9122   4c4 9124   RR+crp 9810    seqcseq 10629   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  resqrexlemcalc3  11442
  Copyright terms: Public domain W3C validator