ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 Unicode version

Theorem resqrexlemcalc2 11180
Description: Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcalc1 11179 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
51, 2, 3resqrexlemf 11172 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
65ffvelcdmda 5697 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
76rpred 9771 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
87resqcld 10791 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR )
92adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
108, 9resubcld 8407 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR )
116rpap0d 9777 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
127, 11sqgt0apd 10793 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( ( F `  N ) ^ 2 ) )
138, 12elrpd 9768 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
148, 9readdcld 8056 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  A )  e.  RR )
153adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
168, 9addge01d 8560 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 0  <_  A  <->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) ) )
1715, 16mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) )
188, 14, 9, 17lesub1dd 8588 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  +  A )  -  A
) )
198recnd 8055 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
209recnd 8055 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
2119, 20pncand 8338 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  A )  -  A )  =  ( ( F `  N ) ^ 2 ) )
2218, 21breqtrd 4059 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( F `  N ) ^ 2 ) )
2310, 8, 13, 22lediv1dd 9830 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
( ( ( F `
 N ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
248, 12gt0ap0d 8656 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
2519, 24dividapd 8813 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  /  ( ( F `
 N ) ^
2 ) )  =  1 )
2623, 25breqtrd 4059 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
1 )
2710, 8, 24redivclapd 8862 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  e.  RR )
28 1red 8041 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
291, 2, 3resqrexlemover 11175 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N ) ^ 2 ) )
30 difrp 9767 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( F `  N ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  N ) ^ 2 )  <->  ( ( ( F `  N ) ^ 2 )  -  A )  e.  RR+ ) )
319, 8, 30syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  <  ( ( F `
 N ) ^
2 )  <->  ( (
( F `  N
) ^ 2 )  -  A )  e.  RR+ ) )
3229, 31mpbid 147 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR+ )
33 4re 9067 . . . . . . . 8  |-  4  e.  RR
3433a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
35 4pos 9087 . . . . . . . 8  |-  0  <  4
3635a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
3734, 36elrpd 9768 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR+ )
3832, 37rpdivcld 9789 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  RR+ )
3927, 28, 38lemul1d 9815 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  <_  1  <->  ( (
( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) ) )
4026, 39mpbid 147 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) )
4110recnd 8055 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
4234recnd 8055 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
4334, 36gt0ap0d 8656 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
4441, 19, 41, 42, 24, 43divmuldivapd 8859 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4541sqvald 10762 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  x.  (
( ( F `  N ) ^ 2 )  -  A ) ) )
4642, 19mulcomd 8048 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( F `
 N ) ^
2 )  x.  4 ) )
4745, 46oveq12d 5940 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4844, 47eqtr4d 2232 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
4938rpcnd 9773 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  CC )
5049mulid2d 8045 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
5140, 48, 503brtr3d 4064 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
524, 51eqbrtrd 4055 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {csn 3622   class class class wbr 4033    X. cxp 4661   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   NNcn 8990   2c2 9041   4c4 9043   RR+crp 9728    seqcseq 10539   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrexlemcalc3  11181
  Copyright terms: Public domain W3C validator