ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 Unicode version

Theorem resqrexlemcalc2 10819
Description: Lemma for resqrex 10830. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcalc1 10818 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
51, 2, 3resqrexlemf 10811 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
65ffvelrnda 5563 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
76rpred 9513 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
87resqcld 10481 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR )
92adantr 274 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
108, 9resubcld 8167 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR )
116rpap0d 9519 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
127, 11sqgt0apd 10483 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( ( F `  N ) ^ 2 ) )
138, 12elrpd 9510 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
148, 9readdcld 7819 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  A )  e.  RR )
153adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
168, 9addge01d 8319 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 0  <_  A  <->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) ) )
1715, 16mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) )
188, 14, 9, 17lesub1dd 8347 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  +  A )  -  A
) )
198recnd 7818 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
209recnd 7818 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
2119, 20pncand 8098 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  A )  -  A )  =  ( ( F `  N ) ^ 2 ) )
2218, 21breqtrd 3962 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( F `  N ) ^ 2 ) )
2310, 8, 13, 22lediv1dd 9572 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
( ( ( F `
 N ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
248, 12gt0ap0d 8415 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
2519, 24dividapd 8570 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  /  ( ( F `
 N ) ^
2 ) )  =  1 )
2623, 25breqtrd 3962 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
1 )
2710, 8, 24redivclapd 8618 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  e.  RR )
28 1red 7805 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
291, 2, 3resqrexlemover 10814 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N ) ^ 2 ) )
30 difrp 9509 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( F `  N ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  N ) ^ 2 )  <->  ( ( ( F `  N ) ^ 2 )  -  A )  e.  RR+ ) )
319, 8, 30syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  <  ( ( F `
 N ) ^
2 )  <->  ( (
( F `  N
) ^ 2 )  -  A )  e.  RR+ ) )
3229, 31mpbid 146 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR+ )
33 4re 8821 . . . . . . . 8  |-  4  e.  RR
3433a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
35 4pos 8841 . . . . . . . 8  |-  0  <  4
3635a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
3734, 36elrpd 9510 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR+ )
3832, 37rpdivcld 9531 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  RR+ )
3927, 28, 38lemul1d 9557 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  <_  1  <->  ( (
( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) ) )
4026, 39mpbid 146 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) )
4110recnd 7818 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
4234recnd 7818 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
4334, 36gt0ap0d 8415 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
4441, 19, 41, 42, 24, 43divmuldivapd 8616 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4541sqvald 10452 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  x.  (
( ( F `  N ) ^ 2 )  -  A ) ) )
4642, 19mulcomd 7811 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( F `
 N ) ^
2 )  x.  4 ) )
4745, 46oveq12d 5800 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4844, 47eqtr4d 2176 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
4938rpcnd 9515 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  CC )
5049mulid2d 7808 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
5140, 48, 503brtr3d 3967 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
524, 51eqbrtrd 3958 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {csn 3532   class class class wbr 3937    X. cxp 4545   ` cfv 5131  (class class class)co 5782    e. cmpo 5784   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    - cmin 7957    / cdiv 8456   NNcn 8744   2c2 8795   4c4 8797   RR+crp 9470    seqcseq 10249   ^cexp 10323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  resqrexlemcalc3  10820
  Copyright terms: Public domain W3C validator