ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 Unicode version

Theorem resqrexlemcalc2 10794
Description: Lemma for resqrex 10805. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcalc1 10793 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
51, 2, 3resqrexlemf 10786 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
65ffvelrnda 5555 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
76rpred 9490 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
87resqcld 10457 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR )
92adantr 274 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
108, 9resubcld 8150 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR )
116rpap0d 9496 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
127, 11sqgt0apd 10459 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( ( F `  N ) ^ 2 ) )
138, 12elrpd 9488 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
148, 9readdcld 7802 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  A )  e.  RR )
153adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
168, 9addge01d 8302 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 0  <_  A  <->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) ) )
1715, 16mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  <_ 
( ( ( F `
 N ) ^
2 )  +  A
) )
188, 14, 9, 17lesub1dd 8330 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  +  A )  -  A
) )
198recnd 7801 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
209recnd 7801 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
2119, 20pncand 8081 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  A )  -  A )  =  ( ( F `  N ) ^ 2 ) )
2218, 21breqtrd 3954 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( F `  N ) ^ 2 ) )
2310, 8, 13, 22lediv1dd 9549 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
( ( ( F `
 N ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
248, 12gt0ap0d 8398 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
2519, 24dividapd 8553 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  /  ( ( F `
 N ) ^
2 ) )  =  1 )
2623, 25breqtrd 3954 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  <_ 
1 )
2710, 8, 24redivclapd 8601 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  ( ( F `
 N ) ^
2 ) )  e.  RR )
28 1red 7788 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
291, 2, 3resqrexlemover 10789 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  A  < 
( ( F `  N ) ^ 2 ) )
30 difrp 9487 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( F `  N ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  N ) ^ 2 )  <->  ( ( ( F `  N ) ^ 2 )  -  A )  e.  RR+ ) )
319, 8, 30syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  <  ( ( F `
 N ) ^
2 )  <->  ( (
( F `  N
) ^ 2 )  -  A )  e.  RR+ ) )
3229, 31mpbid 146 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  RR+ )
33 4re 8804 . . . . . . . 8  |-  4  e.  RR
3433a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
35 4pos 8824 . . . . . . . 8  |-  0  <  4
3635a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
3734, 36elrpd 9488 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR+ )
3832, 37rpdivcld 9508 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  RR+ )
3927, 28, 38lemul1d 9534 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  <_  1  <->  ( (
( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) ) )
4026, 39mpbid 146 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  <_ 
( 1  x.  (
( ( ( F `
 N ) ^
2 )  -  A
)  /  4 ) ) )
4110recnd 7801 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
4234recnd 7801 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
4334, 36gt0ap0d 8398 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
4441, 19, 41, 42, 24, 43divmuldivapd 8599 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4541sqvald 10428 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  x.  (
( ( F `  N ) ^ 2 )  -  A ) ) )
4642, 19mulcomd 7794 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( F `
 N ) ^
2 )  x.  4 ) )
4745, 46oveq12d 5792 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A )  x.  ( ( ( F `
 N ) ^
2 )  -  A
) )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
4844, 47eqtr4d 2175 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
)  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
4938rpcnd 9492 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4 )  e.  CC )
5049mulid2d 7791 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  x.  ( ( ( ( F `  N
) ^ 2 )  -  A )  / 
4 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
5140, 48, 503brtr3d 3959 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( 4  x.  ( ( F `  N ) ^ 2 ) ) )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
524, 51eqbrtrd 3950 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {csn 3527   class class class wbr 3929    X. cxp 4537   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   RRcr 7626   0cc0 7627   1c1 7628    + caddc 7630    x. cmul 7632    < clt 7807    <_ cle 7808    - cmin 7940    / cdiv 8439   NNcn 8727   2c2 8778   4c4 8780   RR+crp 9448    seqcseq 10225   ^cexp 10299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-seqfrec 10226  df-exp 10300
This theorem is referenced by:  resqrexlemcalc3  10795
  Copyright terms: Public domain W3C validator