ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climserle Unicode version

Theorem climserle 11114
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
climserle.2  |-  ( ph  ->  N  e.  Z )
climserle.3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
climserle.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climserle.5  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
Assertion
Ref Expression
climserle  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_  A )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem climserle
Dummy variables  j  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climserle.2 . 2  |-  ( ph  ->  N  e.  Z )
3 climserle.3 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
42, 1eleqtrdi 2232 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzel2 9331 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
64, 5syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
7 climserle.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
81, 6, 7serfre 10248 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
98ffvelrnda 5555 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  RR )
101peano2uzs 9379 . . . . 5  |-  ( j  e.  Z  ->  (
j  +  1 )  e.  Z )
11 fveq2 5421 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  ( F `  k )  =  ( F `  ( j  +  1 ) ) )
1211breq2d 3941 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  ( j  +  1 ) ) ) )
1312imbi2d 229 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  (
( ph  ->  0  <_ 
( F `  k
) )  <->  ( ph  ->  0  <_  ( F `  ( j  +  1 ) ) ) ) )
14 climserle.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
1514expcom 115 . . . . . . 7  |-  ( k  e.  Z  ->  ( ph  ->  0  <_  ( F `  k )
) )
1613, 15vtoclga 2752 . . . . . 6  |-  ( ( j  +  1 )  e.  Z  ->  ( ph  ->  0  <_  ( F `  ( j  +  1 ) ) ) )
1716impcom 124 . . . . 5  |-  ( (
ph  /\  ( j  +  1 )  e.  Z )  ->  0  <_  ( F `  (
j  +  1 ) ) )
1810, 17sylan2 284 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  0  <_  ( F `  (
j  +  1 ) ) )
1911eleq1d 2208 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( j  +  1 ) )  e.  RR ) )
2019imbi2d 229 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  (
( ph  ->  ( F `
 k )  e.  RR )  <->  ( ph  ->  ( F `  (
j  +  1 ) )  e.  RR ) ) )
217expcom 115 . . . . . . . 8  |-  ( k  e.  Z  ->  ( ph  ->  ( F `  k )  e.  RR ) )
2220, 21vtoclga 2752 . . . . . . 7  |-  ( ( j  +  1 )  e.  Z  ->  ( ph  ->  ( F `  ( j  +  1 ) )  e.  RR ) )
2322impcom 124 . . . . . 6  |-  ( (
ph  /\  ( j  +  1 )  e.  Z )  ->  ( F `  ( j  +  1 ) )  e.  RR )
2410, 23sylan2 284 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  ( j  +  1 ) )  e.  RR )
259, 24addge01d 8295 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (
0  <_  ( F `  ( j  +  1 ) )  <->  (  seq M (  +  ,  F ) `  j
)  <_  ( (  seq M (  +  ,  F ) `  j
)  +  ( F `
 ( j  +  1 ) ) ) ) )
2618, 25mpbid 146 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  <_  ( (  seq M (  +  ,  F ) `  j
)  +  ( F `
 ( j  +  1 ) ) ) )
271eleq2i 2206 . . . . . 6  |-  ( j  e.  Z  <->  j  e.  ( ZZ>= `  M )
)
2827biimpi 119 . . . . 5  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  M )
)
2928adantl 275 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
30 simpll 518 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ph )
311eleq2i 2206 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3231biimpri 132 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
3332adantl 275 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  Z )
3430, 33, 7syl2anc 408 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
35 readdcl 7746 . . . . 5  |-  ( ( k  e.  RR  /\  v  e.  RR )  ->  ( k  +  v )  e.  RR )
3635adantl 275 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  e.  RR  /\  v  e.  RR )
)  ->  ( k  +  v )  e.  RR )
3729, 34, 36seq3p1 10235 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  (
j  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  j )  +  ( F `  ( j  +  1 ) ) ) )
3826, 37breqtrrd 3956 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
391, 2, 3, 9, 38climub 11113 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    <_ cle 7801   ZZcz 9054   ZZ>=cuz 9326    seqcseq 10218    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-fz 9791  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  isumrpcl  11263  ege2le3  11377
  Copyright terms: Public domain W3C validator