ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3mono Unicode version

Theorem ser3mono 10477
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
sermono.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
sermono.2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
ser3mono.3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
sermono.4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
Assertion
Ref Expression
ser3mono  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Distinct variable groups:    x, F    x, K    x, M    x, N    ph, x

Proof of Theorem ser3mono
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eqid 2177 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3 sermono.1 . . . . . 6  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 eluzel2 9532 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
65adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  M  e.  ZZ )
7 ser3mono.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
87adantlr 477 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
92, 6, 8serfre 10474 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  seq M (  +  ,  F ) : ( ZZ>= `  M
) --> RR )
10 elfzuz 10020 . . . 4  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
11 uztrn 9543 . . . 4  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
1210, 3, 11syl2anr 290 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  k  e.  ( ZZ>= `  M )
)
139, 12ffvelcdmd 5652 . 2  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
14 fveq2 5515 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
1514breq2d 4015 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( k  +  1 ) ) ) )
16 sermono.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
1716ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) 0  <_  ( F `  x ) )
1817adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) 0  <_  ( F `  x )
)
19 simpr 110 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( N  -  1 ) ) )
203adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ( ZZ>= `  M )
)
21 eluzelz 9536 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
2220, 21syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ZZ )
231adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  K )
)
24 eluzelz 9536 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
26 peano2zm 9290 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2725, 26syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
28 elfzelz 10024 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ZZ )
2928adantl 277 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ZZ )
30 1zzd 9279 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  1  e.  ZZ )
31 fzaddel 10058 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( K ... ( N  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3222, 27, 29, 30, 31syl22anc 1239 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  e.  ( K ... ( N  -  1 ) )  <->  ( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3319, 32mpbid 147 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... (
( N  -  1 )  +  1 ) ) )
34 zcn 9257 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
35 ax-1cn 7903 . . . . . . . . 9  |-  1  e.  CC
36 npcan 8165 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3734, 35, 36sylancl 413 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
3825, 37syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3938oveq2d 5890 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( K  + 
1 ) ... N
) )
4033, 39eleqtrd 2256 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4115, 18, 40rspcdva 2846 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  0  <_  ( F `  ( k  +  1 ) ) )
42 fzelp1 10073 . . . . . . . 8  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
4342adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( ( N  -  1 )  +  1 ) ) )
4438oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... ( ( N  - 
1 )  +  1 ) )  =  ( K ... N ) )
4543, 44eleqtrd 2256 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... N ) )
4645, 13syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
4714eleq1d 2246 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( k  +  1 ) )  e.  RR ) )
487ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  RR )
4948adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  RR )
50 fzss1 10062 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
5120, 50syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... N )  C_  ( M ... N ) )
52 fzp1elp1 10074 . . . . . . . . . 10  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  (
k  +  1 )  e.  ( K ... ( ( N  - 
1 )  +  1 ) ) )
5352adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
5453, 44eleqtrd 2256 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... N
) )
5551, 54sseldd 3156 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
56 elfzuz 10020 . . . . . . 7  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  e.  ( ZZ>= `  M
) )
5755, 56syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5847, 49, 57rspcdva 2846 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
5946, 58addge01d 8489 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( 0  <_  ( F `  ( k  +  1 ) )  <->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) ) )
6041, 59mpbid 147 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) )
6145, 12syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
627adantlr 477 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
63 readdcl 7936 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
6463adantl 277 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
6561, 62, 64seq3p1 10461 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6660, 65breqtrrd 4031 . 2  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  (  seq M (  +  ,  F ) `  (
k  +  1 ) ) )
671, 13, 66monoord 10475 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3129   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    <_ cle 7992    - cmin 8127   ZZcz 9252   ZZ>=cuz 9527   ...cfz 10007    seqcseq 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-fz 10008  df-seqfrec 10445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator