ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3mono Unicode version

Theorem ser3mono 10427
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
sermono.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
sermono.2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
ser3mono.3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
sermono.4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
Assertion
Ref Expression
ser3mono  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Distinct variable groups:    x, F    x, K    x, M    x, N    ph, x

Proof of Theorem ser3mono
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eqid 2170 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3 sermono.1 . . . . . 6  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 eluzel2 9485 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
65adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  M  e.  ZZ )
7 ser3mono.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
87adantlr 474 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
92, 6, 8serfre 10424 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  seq M (  +  ,  F ) : ( ZZ>= `  M
) --> RR )
10 elfzuz 9970 . . . 4  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
11 uztrn 9496 . . . 4  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
1210, 3, 11syl2anr 288 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  k  e.  ( ZZ>= `  M )
)
139, 12ffvelrnd 5630 . 2  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
14 fveq2 5494 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
1514breq2d 3999 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( k  +  1 ) ) ) )
16 sermono.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
1716ralrimiva 2543 . . . . . 6  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) 0  <_  ( F `  x ) )
1817adantr 274 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) 0  <_  ( F `  x )
)
19 simpr 109 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( N  -  1 ) ) )
203adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ( ZZ>= `  M )
)
21 eluzelz 9489 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
2220, 21syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ZZ )
231adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  K )
)
24 eluzelz 9489 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
26 peano2zm 9243 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2725, 26syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
28 elfzelz 9974 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ZZ )
2928adantl 275 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ZZ )
30 1zzd 9232 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  1  e.  ZZ )
31 fzaddel 10008 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( K ... ( N  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3222, 27, 29, 30, 31syl22anc 1234 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  e.  ( K ... ( N  -  1 ) )  <->  ( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3319, 32mpbid 146 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... (
( N  -  1 )  +  1 ) ) )
34 zcn 9210 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
35 ax-1cn 7860 . . . . . . . . 9  |-  1  e.  CC
36 npcan 8121 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3734, 35, 36sylancl 411 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
3825, 37syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3938oveq2d 5867 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( K  + 
1 ) ... N
) )
4033, 39eleqtrd 2249 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4115, 18, 40rspcdva 2839 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  0  <_  ( F `  ( k  +  1 ) ) )
42 fzelp1 10023 . . . . . . . 8  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
4342adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( ( N  -  1 )  +  1 ) ) )
4438oveq2d 5867 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... ( ( N  - 
1 )  +  1 ) )  =  ( K ... N ) )
4543, 44eleqtrd 2249 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... N ) )
4645, 13syldan 280 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
4714eleq1d 2239 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( k  +  1 ) )  e.  RR ) )
487ralrimiva 2543 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  RR )
4948adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  RR )
50 fzss1 10012 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
5120, 50syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... N )  C_  ( M ... N ) )
52 fzp1elp1 10024 . . . . . . . . . 10  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  (
k  +  1 )  e.  ( K ... ( ( N  - 
1 )  +  1 ) ) )
5352adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
5453, 44eleqtrd 2249 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... N
) )
5551, 54sseldd 3148 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
56 elfzuz 9970 . . . . . . 7  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  e.  ( ZZ>= `  M
) )
5755, 56syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5847, 49, 57rspcdva 2839 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
5946, 58addge01d 8445 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( 0  <_  ( F `  ( k  +  1 ) )  <->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) ) )
6041, 59mpbid 146 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) )
6145, 12syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
627adantlr 474 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
63 readdcl 7893 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
6463adantl 275 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
6561, 62, 64seq3p1 10411 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6660, 65breqtrrd 4015 . 2  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  (  seq M (  +  ,  F ) `  (
k  +  1 ) ) )
671, 13, 66monoord 10425 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   class class class wbr 3987   ` cfv 5196  (class class class)co 5851   CCcc 7765   RRcr 7766   0cc0 7767   1c1 7768    + caddc 7770    <_ cle 7948    - cmin 8083   ZZcz 9205   ZZ>=cuz 9480   ...cfz 9958    seqcseq 10394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-fz 9959  df-seqfrec 10395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator