ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3mono Unicode version

Theorem ser3mono 10434
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
sermono.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
sermono.2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
ser3mono.3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
sermono.4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
Assertion
Ref Expression
ser3mono  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Distinct variable groups:    x, F    x, K    x, M    x, N    ph, x

Proof of Theorem ser3mono
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eqid 2170 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3 sermono.1 . . . . . 6  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 eluzel2 9492 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
65adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  M  e.  ZZ )
7 ser3mono.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
87adantlr 474 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
92, 6, 8serfre 10431 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  seq M (  +  ,  F ) : ( ZZ>= `  M
) --> RR )
10 elfzuz 9977 . . . 4  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
11 uztrn 9503 . . . 4  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
1210, 3, 11syl2anr 288 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  k  e.  ( ZZ>= `  M )
)
139, 12ffvelrnd 5632 . 2  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
14 fveq2 5496 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
1514breq2d 4001 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( k  +  1 ) ) ) )
16 sermono.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
1716ralrimiva 2543 . . . . . 6  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) 0  <_  ( F `  x ) )
1817adantr 274 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) 0  <_  ( F `  x )
)
19 simpr 109 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( N  -  1 ) ) )
203adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ( ZZ>= `  M )
)
21 eluzelz 9496 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
2220, 21syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ZZ )
231adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  K )
)
24 eluzelz 9496 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
26 peano2zm 9250 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2725, 26syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
28 elfzelz 9981 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ZZ )
2928adantl 275 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ZZ )
30 1zzd 9239 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  1  e.  ZZ )
31 fzaddel 10015 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( K ... ( N  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3222, 27, 29, 30, 31syl22anc 1234 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  e.  ( K ... ( N  -  1 ) )  <->  ( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3319, 32mpbid 146 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... (
( N  -  1 )  +  1 ) ) )
34 zcn 9217 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
35 ax-1cn 7867 . . . . . . . . 9  |-  1  e.  CC
36 npcan 8128 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3734, 35, 36sylancl 411 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
3825, 37syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3938oveq2d 5869 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( K  + 
1 ) ... N
) )
4033, 39eleqtrd 2249 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4115, 18, 40rspcdva 2839 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  0  <_  ( F `  ( k  +  1 ) ) )
42 fzelp1 10030 . . . . . . . 8  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
4342adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( ( N  -  1 )  +  1 ) ) )
4438oveq2d 5869 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... ( ( N  - 
1 )  +  1 ) )  =  ( K ... N ) )
4543, 44eleqtrd 2249 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... N ) )
4645, 13syldan 280 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
4714eleq1d 2239 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( k  +  1 ) )  e.  RR ) )
487ralrimiva 2543 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  RR )
4948adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  RR )
50 fzss1 10019 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
5120, 50syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... N )  C_  ( M ... N ) )
52 fzp1elp1 10031 . . . . . . . . . 10  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  (
k  +  1 )  e.  ( K ... ( ( N  - 
1 )  +  1 ) ) )
5352adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
5453, 44eleqtrd 2249 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... N
) )
5551, 54sseldd 3148 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
56 elfzuz 9977 . . . . . . 7  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  e.  ( ZZ>= `  M
) )
5755, 56syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5847, 49, 57rspcdva 2839 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
5946, 58addge01d 8452 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( 0  <_  ( F `  ( k  +  1 ) )  <->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) ) )
6041, 59mpbid 146 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) )
6145, 12syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
627adantlr 474 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
63 readdcl 7900 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
6463adantl 275 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
6561, 62, 64seq3p1 10418 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6660, 65breqtrrd 4017 . 2  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  (  seq M (  +  ,  F ) `  (
k  +  1 ) ) )
671, 13, 66monoord 10432 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    <_ cle 7955    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator