| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ser3mono | Unicode version | ||
| Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.) |
| Ref | Expression |
|---|---|
| sermono.1 |
|
| sermono.2 |
|
| ser3mono.3 |
|
| sermono.4 |
|
| Ref | Expression |
|---|---|
| ser3mono |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sermono.2 |
. 2
| |
| 2 | eqid 2204 |
. . . 4
| |
| 3 | sermono.1 |
. . . . . 6
| |
| 4 | eluzel2 9652 |
. . . . . 6
| |
| 5 | 3, 4 | syl 14 |
. . . . 5
|
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | ser3mono.3 |
. . . . 5
| |
| 8 | 7 | adantlr 477 |
. . . 4
|
| 9 | 2, 6, 8 | serfre 10627 |
. . 3
|
| 10 | elfzuz 10142 |
. . . 4
| |
| 11 | uztrn 9664 |
. . . 4
| |
| 12 | 10, 3, 11 | syl2anr 290 |
. . 3
|
| 13 | 9, 12 | ffvelcdmd 5715 |
. 2
|
| 14 | fveq2 5575 |
. . . . . 6
| |
| 15 | 14 | breq2d 4055 |
. . . . 5
|
| 16 | sermono.4 |
. . . . . . 7
| |
| 17 | 16 | ralrimiva 2578 |
. . . . . 6
|
| 18 | 17 | adantr 276 |
. . . . 5
|
| 19 | simpr 110 |
. . . . . . 7
| |
| 20 | 3 | adantr 276 |
. . . . . . . . 9
|
| 21 | eluzelz 9656 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 24 | eluzelz 9656 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . 9
|
| 26 | peano2zm 9409 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | elfzelz 10146 |
. . . . . . . . 9
| |
| 29 | 28 | adantl 277 |
. . . . . . . 8
|
| 30 | 1zzd 9398 |
. . . . . . . 8
| |
| 31 | fzaddel 10180 |
. . . . . . . 8
| |
| 32 | 22, 27, 29, 30, 31 | syl22anc 1250 |
. . . . . . 7
|
| 33 | 19, 32 | mpbid 147 |
. . . . . 6
|
| 34 | zcn 9376 |
. . . . . . . . 9
| |
| 35 | ax-1cn 8017 |
. . . . . . . . 9
| |
| 36 | npcan 8280 |
. . . . . . . . 9
| |
| 37 | 34, 35, 36 | sylancl 413 |
. . . . . . . 8
|
| 38 | 25, 37 | syl 14 |
. . . . . . 7
|
| 39 | 38 | oveq2d 5959 |
. . . . . 6
|
| 40 | 33, 39 | eleqtrd 2283 |
. . . . 5
|
| 41 | 15, 18, 40 | rspcdva 2881 |
. . . 4
|
| 42 | fzelp1 10195 |
. . . . . . . 8
| |
| 43 | 42 | adantl 277 |
. . . . . . 7
|
| 44 | 38 | oveq2d 5959 |
. . . . . . 7
|
| 45 | 43, 44 | eleqtrd 2283 |
. . . . . 6
|
| 46 | 45, 13 | syldan 282 |
. . . . 5
|
| 47 | 14 | eleq1d 2273 |
. . . . . 6
|
| 48 | 7 | ralrimiva 2578 |
. . . . . . 7
|
| 49 | 48 | adantr 276 |
. . . . . 6
|
| 50 | fzss1 10184 |
. . . . . . . . 9
| |
| 51 | 20, 50 | syl 14 |
. . . . . . . 8
|
| 52 | fzp1elp1 10196 |
. . . . . . . . . 10
| |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
|
| 54 | 53, 44 | eleqtrd 2283 |
. . . . . . . 8
|
| 55 | 51, 54 | sseldd 3193 |
. . . . . . 7
|
| 56 | elfzuz 10142 |
. . . . . . 7
| |
| 57 | 55, 56 | syl 14 |
. . . . . 6
|
| 58 | 47, 49, 57 | rspcdva 2881 |
. . . . 5
|
| 59 | 46, 58 | addge01d 8605 |
. . . 4
|
| 60 | 41, 59 | mpbid 147 |
. . 3
|
| 61 | 45, 12 | syldan 282 |
. . . 4
|
| 62 | 7 | adantlr 477 |
. . . 4
|
| 63 | readdcl 8050 |
. . . . 5
| |
| 64 | 63 | adantl 277 |
. . . 4
|
| 65 | 61, 62, 64 | seq3p1 10608 |
. . 3
|
| 66 | 60, 65 | breqtrrd 4071 |
. 2
|
| 67 | 1, 13, 66 | monoord 10628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-seqfrec 10591 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |