ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3mono Unicode version

Theorem ser3mono 10704
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
sermono.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
sermono.2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
ser3mono.3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
sermono.4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
Assertion
Ref Expression
ser3mono  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Distinct variable groups:    x, F    x, K    x, M    x, N    ph, x

Proof of Theorem ser3mono
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eqid 2229 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3 sermono.1 . . . . . 6  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 eluzel2 9723 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
65adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  M  e.  ZZ )
7 ser3mono.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
87adantlr 477 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
92, 6, 8serfre 10701 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  seq M (  +  ,  F ) : ( ZZ>= `  M
) --> RR )
10 elfzuz 10213 . . . 4  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
11 uztrn 9735 . . . 4  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
1210, 3, 11syl2anr 290 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  k  e.  ( ZZ>= `  M )
)
139, 12ffvelcdmd 5770 . 2  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
14 fveq2 5626 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
1514breq2d 4094 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( k  +  1 ) ) ) )
16 sermono.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
1716ralrimiva 2603 . . . . . 6  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) 0  <_  ( F `  x ) )
1817adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) 0  <_  ( F `  x )
)
19 simpr 110 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( N  -  1 ) ) )
203adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ( ZZ>= `  M )
)
21 eluzelz 9727 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
2220, 21syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ZZ )
231adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  K )
)
24 eluzelz 9727 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
26 peano2zm 9480 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2725, 26syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
28 elfzelz 10217 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ZZ )
2928adantl 277 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ZZ )
30 1zzd 9469 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  1  e.  ZZ )
31 fzaddel 10251 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( K ... ( N  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3222, 27, 29, 30, 31syl22anc 1272 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  e.  ( K ... ( N  -  1 ) )  <->  ( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3319, 32mpbid 147 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... (
( N  -  1 )  +  1 ) ) )
34 zcn 9447 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
35 ax-1cn 8088 . . . . . . . . 9  |-  1  e.  CC
36 npcan 8351 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3734, 35, 36sylancl 413 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
3825, 37syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3938oveq2d 6016 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( K  + 
1 ) ... N
) )
4033, 39eleqtrd 2308 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4115, 18, 40rspcdva 2912 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  0  <_  ( F `  ( k  +  1 ) ) )
42 fzelp1 10266 . . . . . . . 8  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
4342adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( ( N  -  1 )  +  1 ) ) )
4438oveq2d 6016 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... ( ( N  - 
1 )  +  1 ) )  =  ( K ... N ) )
4543, 44eleqtrd 2308 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... N ) )
4645, 13syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
4714eleq1d 2298 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( k  +  1 ) )  e.  RR ) )
487ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  RR )
4948adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  RR )
50 fzss1 10255 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
5120, 50syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... N )  C_  ( M ... N ) )
52 fzp1elp1 10267 . . . . . . . . . 10  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  (
k  +  1 )  e.  ( K ... ( ( N  - 
1 )  +  1 ) ) )
5352adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
5453, 44eleqtrd 2308 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... N
) )
5551, 54sseldd 3225 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
56 elfzuz 10213 . . . . . . 7  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  e.  ( ZZ>= `  M
) )
5755, 56syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5847, 49, 57rspcdva 2912 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
5946, 58addge01d 8676 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( 0  <_  ( F `  ( k  +  1 ) )  <->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) ) )
6041, 59mpbid 147 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) )
6145, 12syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
627adantlr 477 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
63 readdcl 8121 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
6463adantl 277 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
6561, 62, 64seq3p1 10682 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6660, 65breqtrrd 4110 . 2  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  (  seq M (  +  ,  F ) `  (
k  +  1 ) ) )
671, 13, 66monoord 10702 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    <_ cle 8178    - cmin 8313   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator