ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tnp1ge0ge0 Unicode version

Theorem 2tnp1ge0ge0 10334
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2tnp1ge0ge0  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  N ) )

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 9312 . . . . . . 7  |-  2  e.  ZZ
21a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3 id 19 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
42, 3zmulcld 9412 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
54peano2zd 9409 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  ZZ )
65zred 9406 . . 3  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
7 2re 9020 . . . 4  |-  2  e.  RR
87a1i 9 . . 3  |-  ( N  e.  ZZ  ->  2  e.  RR )
9 2pos 9041 . . . 4  |-  0  <  2
109a1i 9 . . 3  |-  ( N  e.  ZZ  ->  0  <  2 )
11 ge0div 8859 . . 3  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  RR  /\  2  e.  RR  /\  0  <  2 )  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  ( ( ( 2  x.  N )  +  1 )  /  2 ) ) )
126, 8, 10, 11syl3anc 1249 . 2  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  ( ( ( 2  x.  N )  +  1 )  /  2 ) ) )
134zcnd 9407 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
14 1cnd 8004 . . . . 5  |-  ( N  e.  ZZ  ->  1  e.  CC )
15 2cn 9021 . . . . . . 7  |-  2  e.  CC
16 2ap0 9043 . . . . . . 7  |-  2 #  0
1715, 16pm3.2i 272 . . . . . 6  |-  ( 2  e.  CC  /\  2 #  0 )
1817a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
19 divdirap 8685 . . . . 5  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  N )  +  1 )  /  2
)  =  ( ( ( 2  x.  N
)  /  2 )  +  ( 1  / 
2 ) ) )
2013, 14, 18, 19syl3anc 1249 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( ( 2  x.  N )  /  2 )  +  ( 1  /  2
) ) )
21 zcn 9289 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
22 2cnd 9023 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
2316a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2 #  0 )
2421, 22, 23divcanap3d 8783 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  /  2 )  =  N )
2524oveq1d 5912 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  /  2
)  +  ( 1  /  2 ) )  =  ( N  +  ( 1  /  2
) ) )
2620, 25eqtrd 2222 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( N  +  ( 1  /  2
) ) )
2726breq2d 4030 . 2  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
( 2  x.  N
)  +  1 )  /  2 )  <->  0  <_  ( N  +  ( 1  /  2 ) ) ) )
28 zre 9288 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
29 halfre 9163 . . . . 5  |-  ( 1  /  2 )  e.  RR
3029a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  (
1  /  2 )  e.  RR )
3128, 30readdcld 8018 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  ( 1  /  2 ) )  e.  RR )
32 halfge0 9166 . . . 4  |-  0  <_  ( 1  /  2
)
3328, 30addge01d 8521 . . . 4  |-  ( N  e.  ZZ  ->  (
0  <_  ( 1  /  2 )  <->  N  <_  ( N  +  ( 1  /  2 ) ) ) )
3432, 33mpbii 148 . . 3  |-  ( N  e.  ZZ  ->  N  <_  ( N  +  ( 1  /  2 ) ) )
35 1red 8003 . . . 4  |-  ( N  e.  ZZ  ->  1  e.  RR )
36 halflt1 9167 . . . . 5  |-  ( 1  /  2 )  <  1
3736a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  (
1  /  2 )  <  1 )
3830, 35, 28, 37ltadd2dd 8410 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  ( 1  /  2 ) )  <  ( N  + 
1 ) )
39 btwnzge0 10333 . . 3  |-  ( ( ( ( N  +  ( 1  /  2
) )  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_ 
( N  +  ( 1  /  2 ) )  /\  ( N  +  ( 1  / 
2 ) )  < 
( N  +  1 ) ) )  -> 
( 0  <_  ( N  +  ( 1  /  2 ) )  <->  0  <_  N )
)
4031, 3, 34, 38, 39syl22anc 1250 . 2  |-  ( N  e.  ZZ  ->  (
0  <_  ( N  +  ( 1  / 
2 ) )  <->  0  <_  N ) )
4112, 27, 403bitrd 214 1  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   CCcc 7840   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847    < clt 8023    <_ cle 8024   # cap 8569    / cdiv 8660   2c2 9001   ZZcz 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285
This theorem is referenced by:  oddnn02np1  11920
  Copyright terms: Public domain W3C validator