ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tnp1ge0ge0 Unicode version

Theorem 2tnp1ge0ge0 10481
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2tnp1ge0ge0  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  N ) )

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 9435 . . . . . . 7  |-  2  e.  ZZ
21a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3 id 19 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
42, 3zmulcld 9536 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
54peano2zd 9533 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  ZZ )
65zred 9530 . . 3  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
7 2re 9141 . . . 4  |-  2  e.  RR
87a1i 9 . . 3  |-  ( N  e.  ZZ  ->  2  e.  RR )
9 2pos 9162 . . . 4  |-  0  <  2
109a1i 9 . . 3  |-  ( N  e.  ZZ  ->  0  <  2 )
11 ge0div 8979 . . 3  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  RR  /\  2  e.  RR  /\  0  <  2 )  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  ( ( ( 2  x.  N )  +  1 )  /  2 ) ) )
126, 8, 10, 11syl3anc 1250 . 2  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  ( ( ( 2  x.  N )  +  1 )  /  2 ) ) )
134zcnd 9531 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
14 1cnd 8123 . . . . 5  |-  ( N  e.  ZZ  ->  1  e.  CC )
15 2cn 9142 . . . . . . 7  |-  2  e.  CC
16 2ap0 9164 . . . . . . 7  |-  2 #  0
1715, 16pm3.2i 272 . . . . . 6  |-  ( 2  e.  CC  /\  2 #  0 )
1817a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
19 divdirap 8805 . . . . 5  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  N )  +  1 )  /  2
)  =  ( ( ( 2  x.  N
)  /  2 )  +  ( 1  / 
2 ) ) )
2013, 14, 18, 19syl3anc 1250 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( ( 2  x.  N )  /  2 )  +  ( 1  /  2
) ) )
21 zcn 9412 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
22 2cnd 9144 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
2316a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2 #  0 )
2421, 22, 23divcanap3d 8903 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  /  2 )  =  N )
2524oveq1d 5982 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  /  2
)  +  ( 1  /  2 ) )  =  ( N  +  ( 1  /  2
) ) )
2620, 25eqtrd 2240 . . 3  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( N  +  ( 1  /  2
) ) )
2726breq2d 4071 . 2  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
( 2  x.  N
)  +  1 )  /  2 )  <->  0  <_  ( N  +  ( 1  /  2 ) ) ) )
28 zre 9411 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
29 halfre 9285 . . . . 5  |-  ( 1  /  2 )  e.  RR
3029a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  (
1  /  2 )  e.  RR )
3128, 30readdcld 8137 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  ( 1  /  2 ) )  e.  RR )
32 halfge0 9288 . . . 4  |-  0  <_  ( 1  /  2
)
3328, 30addge01d 8641 . . . 4  |-  ( N  e.  ZZ  ->  (
0  <_  ( 1  /  2 )  <->  N  <_  ( N  +  ( 1  /  2 ) ) ) )
3432, 33mpbii 148 . . 3  |-  ( N  e.  ZZ  ->  N  <_  ( N  +  ( 1  /  2 ) ) )
35 1red 8122 . . . 4  |-  ( N  e.  ZZ  ->  1  e.  RR )
36 halflt1 9289 . . . . 5  |-  ( 1  /  2 )  <  1
3736a1i 9 . . . 4  |-  ( N  e.  ZZ  ->  (
1  /  2 )  <  1 )
3830, 35, 28, 37ltadd2dd 8530 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  ( 1  /  2 ) )  <  ( N  + 
1 ) )
39 btwnzge0 10480 . . 3  |-  ( ( ( ( N  +  ( 1  /  2
) )  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_ 
( N  +  ( 1  /  2 ) )  /\  ( N  +  ( 1  / 
2 ) )  < 
( N  +  1 ) ) )  -> 
( 0  <_  ( N  +  ( 1  /  2 ) )  <->  0  <_  N )
)
4031, 3, 34, 38, 39syl22anc 1251 . 2  |-  ( N  e.  ZZ  ->  (
0  <_  ( N  +  ( 1  / 
2 ) )  <->  0  <_  N ) )
4112, 27, 403bitrd 214 1  |-  ( N  e.  ZZ  ->  (
0  <_  ( (
2  x.  N )  +  1 )  <->  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143   # cap 8689    / cdiv 8780   2c2 9122   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408
This theorem is referenced by:  oddnn02np1  12306
  Copyright terms: Public domain W3C validator