ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsbnd Unicode version

Theorem dvdsbnd 12123
Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
Assertion
Ref Expression
dvdsbnd  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  E. n  e.  NN  A. m  e.  ( ZZ>= `  n )  -.  m  ||  A )
Distinct variable group:    A, m, n

Proof of Theorem dvdsbnd
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  A  e.  ZZ )
21zcnd 9449 . . . 4  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  A  e.  CC )
32abscld 11346 . . 3  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR )
4 arch 9246 . . 3  |-  ( ( abs `  A )  e.  RR  ->  E. n  e.  NN  ( abs `  A
)  <  n )
53, 4syl 14 . 2  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  E. n  e.  NN  ( abs `  A )  <  n )
63ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( abs `  A )  e.  RR )
7 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
87nnred 9003 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  n  e.  RR )
9 eluzelz 9610 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  n
)  ->  m  e.  ZZ )
109adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  m  e.  ZZ )
1110zred 9448 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  m  e.  RR )
12 simplr 528 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( abs `  A )  <  n
)
13 eluzle 9613 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  n
)  ->  n  <_  m )
1413adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  n  <_  m )
156, 8, 11, 12, 14ltletrd 8450 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( abs `  A )  <  m
)
16 zabscl 11251 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  ZZ )
1716ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( abs `  A )  e.  ZZ )
18 zltnle 9372 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  ZZ  /\  m  e.  ZZ )  ->  ( ( abs `  A
)  <  m  <->  -.  m  <_  ( abs `  A
) ) )
1917, 10, 18syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  A )  < 
m  <->  -.  m  <_  ( abs `  A ) ) )
2015, 19mpbid 147 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  -.  m  <_  ( abs `  A
) )
211ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  A  e.  ZZ )
22 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  ->  A  =/=  0
)
2322ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  A  =/=  0 )
24 dvdsleabs 12010 . . . . . . . 8  |-  ( ( m  e.  ZZ  /\  A  e.  ZZ  /\  A  =/=  0 )  ->  (
m  ||  A  ->  m  <_  ( abs `  A
) ) )
2524con3d 632 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  A  e.  ZZ  /\  A  =/=  0 )  ->  ( -.  m  <_  ( abs `  A )  ->  -.  m  ||  A ) )
2610, 21, 23, 25syl3anc 1249 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  ( -.  m  <_  ( abs `  A
)  ->  -.  m  ||  A ) )
2720, 26mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  /\  m  e.  ( ZZ>= `  n )
)  ->  -.  m  ||  A )
2827ralrimiva 2570 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  /\  ( abs `  A )  < 
n )  ->  A. m  e.  ( ZZ>= `  n )  -.  m  ||  A )
2928ex 115 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  n  e.  NN )  ->  ( ( abs `  A )  <  n  ->  A. m  e.  (
ZZ>= `  n )  -.  m  ||  A ) )
3029reximdva 2599 . 2  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( E. n  e.  NN  ( abs `  A
)  <  n  ->  E. n  e.  NN  A. m  e.  ( ZZ>= `  n )  -.  m  ||  A ) )
315, 30mpd 13 1  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  E. n  e.  NN  A. m  e.  ( ZZ>= `  n )  -.  m  ||  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   class class class wbr 4033   ` cfv 5258   RRcr 7878   0cc0 7879    < clt 8061    <_ cle 8062   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   abscabs 11162    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953
This theorem is referenced by:  gcdsupex  12124  gcdsupcl  12125
  Copyright terms: Public domain W3C validator