ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0gsum Unicode version

Theorem mulgnn0gsum 13464
Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b  |-  B  =  ( Base `  G
)
mulgnngsum.t  |-  .x.  =  (.g
`  G )
mulgnngsum.f  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
Assertion
Ref Expression
mulgnn0gsum  |-  ( ( N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Distinct variable groups:    x, B    x, N    x, X
Allowed substitution hints:    .x. ( x)    F( x)    G( x)

Proof of Theorem mulgnn0gsum
StepHypRef Expression
1 elnn0 9297 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 mulgnngsum.b . . . . . 6  |-  B  =  ( Base `  G
)
3 mulgnngsum.t . . . . . 6  |-  .x.  =  (.g
`  G )
4 mulgnngsum.f . . . . . 6  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
52, 3, 4mulgnngsum 13463 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
65ex 115 . . . 4  |-  ( N  e.  NN  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
72basmex 12891 . . . . . . . 8  |-  ( X  e.  B  ->  G  e.  _V )
87adantl 277 . . . . . . 7  |-  ( ( N  =  0  /\  X  e.  B )  ->  G  e.  _V )
9 eqid 2205 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
109gsum0g 13228 . . . . . . 7  |-  ( G  e.  _V  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
118, 10syl 14 . . . . . 6  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( G  gsumg  (/) )  =  ( 0g `  G
) )
12 oveq2 5952 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
1 ... N )  =  ( 1 ... 0
) )
13 fz10 10168 . . . . . . . . . . . 12  |-  ( 1 ... 0 )  =  (/)
1412, 13eqtrdi 2254 . . . . . . . . . . 11  |-  ( N  =  0  ->  (
1 ... N )  =  (/) )
1514mpteq1d 4129 . . . . . . . . . 10  |-  ( N  =  0  ->  (
x  e.  ( 1 ... N )  |->  X )  =  ( x  e.  (/)  |->  X ) )
16 mpt0 5403 . . . . . . . . . 10  |-  ( x  e.  (/)  |->  X )  =  (/)
1715, 16eqtrdi 2254 . . . . . . . . 9  |-  ( N  =  0  ->  (
x  e.  ( 1 ... N )  |->  X )  =  (/) )
184, 17eqtrid 2250 . . . . . . . 8  |-  ( N  =  0  ->  F  =  (/) )
1918adantr 276 . . . . . . 7  |-  ( ( N  =  0  /\  X  e.  B )  ->  F  =  (/) )
2019oveq2d 5960 . . . . . 6  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( G  gsumg  F )  =  ( G  gsumg  (/) ) )
21 oveq1 5951 . . . . . . 7  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
222, 9, 3mulg0 13461 . . . . . . 7  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2321, 22sylan9eq 2258 . . . . . 6  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( 0g `  G ) )
2411, 20, 233eqtr4rd 2249 . . . . 5  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
2524ex 115 . . . 4  |-  ( N  =  0  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
266, 25jaoi 718 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
271, 26sylbi 121 . 2  |-  ( N  e.  NN0  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
2827imp 124 1  |-  ( ( N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460    |-> cmpt 4105   ` cfv 5271  (class class class)co 5944   0cc0 7925   1c1 7926   NNcn 9036   NN0cn0 9295   ...cfz 10130   Basecbs 12832   0gc0g 13088    gsumg cgsu 13089  .gcmg 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-igsum 13091  df-minusg 13336  df-mulg 13456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator