ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0gsum Unicode version

Theorem mulgnn0gsum 13198
Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b  |-  B  =  ( Base `  G
)
mulgnngsum.t  |-  .x.  =  (.g
`  G )
mulgnngsum.f  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
Assertion
Ref Expression
mulgnn0gsum  |-  ( ( N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Distinct variable groups:    x, B    x, N    x, X
Allowed substitution hints:    .x. ( x)    F( x)    G( x)

Proof of Theorem mulgnn0gsum
StepHypRef Expression
1 elnn0 9242 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 mulgnngsum.b . . . . . 6  |-  B  =  ( Base `  G
)
3 mulgnngsum.t . . . . . 6  |-  .x.  =  (.g
`  G )
4 mulgnngsum.f . . . . . 6  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
52, 3, 4mulgnngsum 13197 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
65ex 115 . . . 4  |-  ( N  e.  NN  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
72basmex 12677 . . . . . . . 8  |-  ( X  e.  B  ->  G  e.  _V )
87adantl 277 . . . . . . 7  |-  ( ( N  =  0  /\  X  e.  B )  ->  G  e.  _V )
9 eqid 2193 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
109gsum0g 12979 . . . . . . 7  |-  ( G  e.  _V  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
118, 10syl 14 . . . . . 6  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( G  gsumg  (/) )  =  ( 0g `  G
) )
12 oveq2 5926 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
1 ... N )  =  ( 1 ... 0
) )
13 fz10 10112 . . . . . . . . . . . 12  |-  ( 1 ... 0 )  =  (/)
1412, 13eqtrdi 2242 . . . . . . . . . . 11  |-  ( N  =  0  ->  (
1 ... N )  =  (/) )
1514mpteq1d 4114 . . . . . . . . . 10  |-  ( N  =  0  ->  (
x  e.  ( 1 ... N )  |->  X )  =  ( x  e.  (/)  |->  X ) )
16 mpt0 5381 . . . . . . . . . 10  |-  ( x  e.  (/)  |->  X )  =  (/)
1715, 16eqtrdi 2242 . . . . . . . . 9  |-  ( N  =  0  ->  (
x  e.  ( 1 ... N )  |->  X )  =  (/) )
184, 17eqtrid 2238 . . . . . . . 8  |-  ( N  =  0  ->  F  =  (/) )
1918adantr 276 . . . . . . 7  |-  ( ( N  =  0  /\  X  e.  B )  ->  F  =  (/) )
2019oveq2d 5934 . . . . . 6  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( G  gsumg  F )  =  ( G  gsumg  (/) ) )
21 oveq1 5925 . . . . . . 7  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
222, 9, 3mulg0 13195 . . . . . . 7  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2321, 22sylan9eq 2246 . . . . . 6  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( 0g `  G ) )
2411, 20, 233eqtr4rd 2237 . . . . 5  |-  ( ( N  =  0  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
2524ex 115 . . . 4  |-  ( N  =  0  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
266, 25jaoi 717 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
271, 26sylbi 121 . 2  |-  ( N  e.  NN0  ->  ( X  e.  B  ->  ( N  .x.  X )  =  ( G  gsumg  F ) ) )
2827imp 124 1  |-  ( ( N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873   NNcn 8982   NN0cn0 9240   ...cfz 10074   Basecbs 12618   0gc0g 12867    gsumg cgsu 12868  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-minusg 13076  df-mulg 13190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator