ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnngsum Unicode version

Theorem mulgnngsum 13197
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b  |-  B  =  ( Base `  G
)
mulgnngsum.t  |-  .x.  =  (.g
`  G )
mulgnngsum.f  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
Assertion
Ref Expression
mulgnngsum  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Distinct variable groups:    x, B    x, N    x, X
Allowed substitution hints:    .x. ( x)    F( x)    G( x)

Proof of Theorem mulgnngsum
Dummy variables  a  b  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9629 . . . . 5  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 120 . . . 4  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantr 276 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 mulgnngsum.f . . . . . 6  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
54a1i 9 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  F  =  ( x  e.  (
1 ... N )  |->  X ) )
6 eqidd 2194 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N
) )  /\  x  =  i )  ->  X  =  X )
7 simpr 110 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  i  e.  ( 1 ... N
) )
8 simpr 110 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  X  e.  B )
98adantr 276 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  X  e.  B )
105, 6, 7, 9fvmptd 5638 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  X )
11 elfznn 10120 . . . . 5  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
12 fvconst2g 5772 . . . . 5  |-  ( ( X  e.  B  /\  i  e.  NN )  ->  ( ( NN  X.  { X } ) `  i )  =  X )
138, 11, 12syl2an 289 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( ( NN  X.  { X }
) `  i )  =  X )
1410, 13eqtr4d 2229 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  ( ( NN  X.  { X } ) `  i
) )
15 1zzd 9344 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  1  e.  ZZ )
16 nnz 9336 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716adantr 276 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ZZ )
1815, 17fzfigd 10502 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( 1 ... N
)  e.  Fin )
19 mptexg 5783 . . . . . . 7  |-  ( ( 1 ... N )  e.  Fin  ->  (
x  e.  ( 1 ... N )  |->  X )  e.  _V )
204, 19eqeltrid 2280 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  F  e.  _V )
2118, 20syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F  e.  _V )
2221adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  F  e.  _V )
23 vex 2763 . . . 4  |-  a  e. 
_V
24 fvexg 5573 . . . 4  |-  ( ( F  e.  _V  /\  a  e.  _V )  ->  ( F `  a
)  e.  _V )
2522, 23, 24sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( F `  a )  e.  _V )
26 nnex 8988 . . . . 5  |-  NN  e.  _V
278adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
28 snexg 4213 . . . . . 6  |-  ( X  e.  B  ->  { X }  e.  _V )
2927, 28syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  { X }  e.  _V )
30 xpexg 4773 . . . . 5  |-  ( ( NN  e.  _V  /\  { X }  e.  _V )  ->  ( NN  X.  { X } )  e. 
_V )
3126, 29, 30sylancr 414 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( NN  X.  { X } )  e. 
_V )
32 fvexg 5573 . . . 4  |-  ( ( ( NN  X.  { X } )  e.  _V  /\  a  e.  _V )  ->  ( ( NN  X.  { X } ) `  a )  e.  _V )
3331, 23, 32sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  a )  e.  _V )
34 mulgnngsum.b . . . . . . 7  |-  B  =  ( Base `  G
)
3534basmex 12677 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
3635adantl 277 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  G  e.  _V )
37 plusgslid 12730 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3837slotex 12645 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
3936, 38syl 14 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( +g  `  G
)  e.  _V )
40 simprr 531 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  b  e.  _V )
41 ovexg 5952 . . . 4  |-  ( ( a  e.  _V  /\  ( +g  `  G )  e.  _V  /\  b  e.  _V )  ->  (
a ( +g  `  G
) b )  e. 
_V )
4223, 39, 40, 41mp3an2ani 1355 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  (
a ( +g  `  G
) b )  e. 
_V )
433, 14, 25, 33, 42seq3fveq 10550 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( ( +g  `  G
) ,  F ) `
 N )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
44 eqid 2193 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
458adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  x  e.  ( 1 ... N ) )  ->  X  e.  B )
4645, 4fmptd 5712 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F : ( 1 ... N ) --> B )
4734, 44, 36, 3, 46gsumval2 12980 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  F ) `  N ) )
48 mulgnngsum.t . . 3  |-  .x.  =  (.g
`  G )
49 eqid 2193 . . 3  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
5034, 44, 48, 49mulgnn 13196 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
5143, 47, 503eqtr4rd 2237 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618    |-> cmpt 4090    X. cxp 4657   ` cfv 5254  (class class class)co 5918   Fincfn 6794   1c1 7873   NNcn 8982   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   Basecbs 12618   +g cplusg 12695    gsumg cgsu 12868  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgnn0gsum  13198
  Copyright terms: Public domain W3C validator