ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnngsum Unicode version

Theorem mulgnngsum 13434
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b  |-  B  =  ( Base `  G
)
mulgnngsum.t  |-  .x.  =  (.g
`  G )
mulgnngsum.f  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
Assertion
Ref Expression
mulgnngsum  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Distinct variable groups:    x, B    x, N    x, X
Allowed substitution hints:    .x. ( x)    F( x)    G( x)

Proof of Theorem mulgnngsum
Dummy variables  a  b  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9684 . . . . 5  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 120 . . . 4  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantr 276 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 mulgnngsum.f . . . . . 6  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
54a1i 9 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  F  =  ( x  e.  (
1 ... N )  |->  X ) )
6 eqidd 2205 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N
) )  /\  x  =  i )  ->  X  =  X )
7 simpr 110 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  i  e.  ( 1 ... N
) )
8 simpr 110 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  X  e.  B )
98adantr 276 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  X  e.  B )
105, 6, 7, 9fvmptd 5659 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  X )
11 elfznn 10175 . . . . 5  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
12 fvconst2g 5797 . . . . 5  |-  ( ( X  e.  B  /\  i  e.  NN )  ->  ( ( NN  X.  { X } ) `  i )  =  X )
138, 11, 12syl2an 289 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( ( NN  X.  { X }
) `  i )  =  X )
1410, 13eqtr4d 2240 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  ( ( NN  X.  { X } ) `  i
) )
15 1zzd 9398 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  1  e.  ZZ )
16 nnz 9390 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716adantr 276 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ZZ )
1815, 17fzfigd 10574 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( 1 ... N
)  e.  Fin )
19 mptexg 5808 . . . . . . 7  |-  ( ( 1 ... N )  e.  Fin  ->  (
x  e.  ( 1 ... N )  |->  X )  e.  _V )
204, 19eqeltrid 2291 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  F  e.  _V )
2118, 20syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F  e.  _V )
2221adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  F  e.  _V )
23 vex 2774 . . . 4  |-  a  e. 
_V
24 fvexg 5594 . . . 4  |-  ( ( F  e.  _V  /\  a  e.  _V )  ->  ( F `  a
)  e.  _V )
2522, 23, 24sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( F `  a )  e.  _V )
26 nnex 9041 . . . . 5  |-  NN  e.  _V
278adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
28 snexg 4227 . . . . . 6  |-  ( X  e.  B  ->  { X }  e.  _V )
2927, 28syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  { X }  e.  _V )
30 xpexg 4788 . . . . 5  |-  ( ( NN  e.  _V  /\  { X }  e.  _V )  ->  ( NN  X.  { X } )  e. 
_V )
3126, 29, 30sylancr 414 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( NN  X.  { X } )  e. 
_V )
32 fvexg 5594 . . . 4  |-  ( ( ( NN  X.  { X } )  e.  _V  /\  a  e.  _V )  ->  ( ( NN  X.  { X } ) `  a )  e.  _V )
3331, 23, 32sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  a )  e.  _V )
34 mulgnngsum.b . . . . . . 7  |-  B  =  ( Base `  G
)
3534basmex 12862 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
3635adantl 277 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  G  e.  _V )
37 plusgslid 12915 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3837slotex 12830 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
3936, 38syl 14 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( +g  `  G
)  e.  _V )
40 simprr 531 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  b  e.  _V )
41 ovexg 5977 . . . 4  |-  ( ( a  e.  _V  /\  ( +g  `  G )  e.  _V  /\  b  e.  _V )  ->  (
a ( +g  `  G
) b )  e. 
_V )
4223, 39, 40, 41mp3an2ani 1356 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  (
a ( +g  `  G
) b )  e. 
_V )
433, 14, 25, 33, 42seq3fveq 10622 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( ( +g  `  G
) ,  F ) `
 N )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
44 eqid 2204 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
458adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  x  e.  ( 1 ... N ) )  ->  X  e.  B )
4645, 4fmptd 5733 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F : ( 1 ... N ) --> B )
4734, 44, 36, 3, 46gsumval2 13200 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  F ) `  N ) )
48 mulgnngsum.t . . 3  |-  .x.  =  (.g
`  G )
49 eqid 2204 . . 3  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
5034, 44, 48, 49mulgnn 13433 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
5143, 47, 503eqtr4rd 2248 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771   {csn 3632    |-> cmpt 4104    X. cxp 4672   ` cfv 5270  (class class class)co 5943   Fincfn 6826   1c1 7925   NNcn 9035   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129    seqcseq 10590   Basecbs 12803   +g cplusg 12880    gsumg cgsu 13060  .gcmg 13426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-en 6827  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-seqfrec 10591  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-0g 13061  df-igsum 13062  df-minusg 13307  df-mulg 13427
This theorem is referenced by:  mulgnn0gsum  13435
  Copyright terms: Public domain W3C validator