ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnngsum Unicode version

Theorem mulgnngsum 13659
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b  |-  B  =  ( Base `  G
)
mulgnngsum.t  |-  .x.  =  (.g
`  G )
mulgnngsum.f  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
Assertion
Ref Expression
mulgnngsum  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Distinct variable groups:    x, B    x, N    x, X
Allowed substitution hints:    .x. ( x)    F( x)    G( x)

Proof of Theorem mulgnngsum
Dummy variables  a  b  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9755 . . . . 5  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 120 . . . 4  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantr 276 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 mulgnngsum.f . . . . . 6  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
54a1i 9 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  F  =  ( x  e.  (
1 ... N )  |->  X ) )
6 eqidd 2230 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N
) )  /\  x  =  i )  ->  X  =  X )
7 simpr 110 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  i  e.  ( 1 ... N
) )
8 simpr 110 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  X  e.  B )
98adantr 276 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  X  e.  B )
105, 6, 7, 9fvmptd 5714 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  X )
11 elfznn 10246 . . . . 5  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
12 fvconst2g 5852 . . . . 5  |-  ( ( X  e.  B  /\  i  e.  NN )  ->  ( ( NN  X.  { X } ) `  i )  =  X )
138, 11, 12syl2an 289 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( ( NN  X.  { X }
) `  i )  =  X )
1410, 13eqtr4d 2265 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  ( ( NN  X.  { X } ) `  i
) )
15 1zzd 9469 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  1  e.  ZZ )
16 nnz 9461 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716adantr 276 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ZZ )
1815, 17fzfigd 10648 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( 1 ... N
)  e.  Fin )
19 mptexg 5863 . . . . . . 7  |-  ( ( 1 ... N )  e.  Fin  ->  (
x  e.  ( 1 ... N )  |->  X )  e.  _V )
204, 19eqeltrid 2316 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  F  e.  _V )
2118, 20syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F  e.  _V )
2221adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  F  e.  _V )
23 vex 2802 . . . 4  |-  a  e. 
_V
24 fvexg 5645 . . . 4  |-  ( ( F  e.  _V  /\  a  e.  _V )  ->  ( F `  a
)  e.  _V )
2522, 23, 24sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( F `  a )  e.  _V )
26 nnex 9112 . . . . 5  |-  NN  e.  _V
278adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
28 snexg 4267 . . . . . 6  |-  ( X  e.  B  ->  { X }  e.  _V )
2927, 28syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  { X }  e.  _V )
30 xpexg 4832 . . . . 5  |-  ( ( NN  e.  _V  /\  { X }  e.  _V )  ->  ( NN  X.  { X } )  e. 
_V )
3126, 29, 30sylancr 414 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( NN  X.  { X } )  e. 
_V )
32 fvexg 5645 . . . 4  |-  ( ( ( NN  X.  { X } )  e.  _V  /\  a  e.  _V )  ->  ( ( NN  X.  { X } ) `  a )  e.  _V )
3331, 23, 32sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  a )  e.  _V )
34 mulgnngsum.b . . . . . . 7  |-  B  =  ( Base `  G
)
3534basmex 13087 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
3635adantl 277 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  G  e.  _V )
37 plusgslid 13140 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3837slotex 13054 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
3936, 38syl 14 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( +g  `  G
)  e.  _V )
40 simprr 531 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  b  e.  _V )
41 ovexg 6034 . . . 4  |-  ( ( a  e.  _V  /\  ( +g  `  G )  e.  _V  /\  b  e.  _V )  ->  (
a ( +g  `  G
) b )  e. 
_V )
4223, 39, 40, 41mp3an2ani 1378 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  (
a ( +g  `  G
) b )  e. 
_V )
433, 14, 25, 33, 42seq3fveq 10696 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( ( +g  `  G
) ,  F ) `
 N )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
44 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
458adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  x  e.  ( 1 ... N ) )  ->  X  e.  B )
4645, 4fmptd 5788 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F : ( 1 ... N ) --> B )
4734, 44, 36, 3, 46gsumval2 13425 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  F ) `  N ) )
48 mulgnngsum.t . . 3  |-  .x.  =  (.g
`  G )
49 eqid 2229 . . 3  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
5034, 44, 48, 49mulgnn 13658 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
5143, 47, 503eqtr4rd 2273 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    |-> cmpt 4144    X. cxp 4716   ` cfv 5317  (class class class)co 6000   Fincfn 6885   1c1 7996   NNcn 9106   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105    gsumg cgsu 13285  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-igsum 13287  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgnn0gsum  13660
  Copyright terms: Public domain W3C validator