ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnngsum Unicode version

Theorem mulgnngsum 13257
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b  |-  B  =  ( Base `  G
)
mulgnngsum.t  |-  .x.  =  (.g
`  G )
mulgnngsum.f  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
Assertion
Ref Expression
mulgnngsum  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Distinct variable groups:    x, B    x, N    x, X
Allowed substitution hints:    .x. ( x)    F( x)    G( x)

Proof of Theorem mulgnngsum
Dummy variables  a  b  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9638 . . . . 5  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 120 . . . 4  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantr 276 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 mulgnngsum.f . . . . . 6  |-  F  =  ( x  e.  ( 1 ... N ) 
|->  X )
54a1i 9 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  F  =  ( x  e.  (
1 ... N )  |->  X ) )
6 eqidd 2197 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N
) )  /\  x  =  i )  ->  X  =  X )
7 simpr 110 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  i  e.  ( 1 ... N
) )
8 simpr 110 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  X  e.  B )
98adantr 276 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  X  e.  B )
105, 6, 7, 9fvmptd 5642 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  X )
11 elfznn 10129 . . . . 5  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
12 fvconst2g 5776 . . . . 5  |-  ( ( X  e.  B  /\  i  e.  NN )  ->  ( ( NN  X.  { X } ) `  i )  =  X )
138, 11, 12syl2an 289 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( ( NN  X.  { X }
) `  i )  =  X )
1410, 13eqtr4d 2232 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  =  ( ( NN  X.  { X } ) `  i
) )
15 1zzd 9353 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  1  e.  ZZ )
16 nnz 9345 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716adantr 276 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ZZ )
1815, 17fzfigd 10523 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( 1 ... N
)  e.  Fin )
19 mptexg 5787 . . . . . . 7  |-  ( ( 1 ... N )  e.  Fin  ->  (
x  e.  ( 1 ... N )  |->  X )  e.  _V )
204, 19eqeltrid 2283 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  F  e.  _V )
2118, 20syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F  e.  _V )
2221adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  F  e.  _V )
23 vex 2766 . . . 4  |-  a  e. 
_V
24 fvexg 5577 . . . 4  |-  ( ( F  e.  _V  /\  a  e.  _V )  ->  ( F `  a
)  e.  _V )
2522, 23, 24sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( F `  a )  e.  _V )
26 nnex 8996 . . . . 5  |-  NN  e.  _V
278adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
28 snexg 4217 . . . . . 6  |-  ( X  e.  B  ->  { X }  e.  _V )
2927, 28syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  { X }  e.  _V )
30 xpexg 4777 . . . . 5  |-  ( ( NN  e.  _V  /\  { X }  e.  _V )  ->  ( NN  X.  { X } )  e. 
_V )
3126, 29, 30sylancr 414 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( NN  X.  { X } )  e. 
_V )
32 fvexg 5577 . . . 4  |-  ( ( ( NN  X.  { X } )  e.  _V  /\  a  e.  _V )  ->  ( ( NN  X.  { X } ) `  a )  e.  _V )
3331, 23, 32sylancl 413 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  a  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  a )  e.  _V )
34 mulgnngsum.b . . . . . . 7  |-  B  =  ( Base `  G
)
3534basmex 12737 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
3635adantl 277 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  G  e.  _V )
37 plusgslid 12790 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3837slotex 12705 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
3936, 38syl 14 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( +g  `  G
)  e.  _V )
40 simprr 531 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  b  e.  _V )
41 ovexg 5956 . . . 4  |-  ( ( a  e.  _V  /\  ( +g  `  G )  e.  _V  /\  b  e.  _V )  ->  (
a ( +g  `  G
) b )  e. 
_V )
4223, 39, 40, 41mp3an2ani 1355 . . 3  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( a  e. 
_V  /\  b  e.  _V ) )  ->  (
a ( +g  `  G
) b )  e. 
_V )
433, 14, 25, 33, 42seq3fveq 10571 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( ( +g  `  G
) ,  F ) `
 N )  =  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) )
44 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
458adantr 276 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  x  e.  ( 1 ... N ) )  ->  X  e.  B )
4645, 4fmptd 5716 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  F : ( 1 ... N ) --> B )
4734, 44, 36, 3, 46gsumval2 13040 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  F ) `  N ) )
48 mulgnngsum.t . . 3  |-  .x.  =  (.g
`  G )
49 eqid 2196 . . 3  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
5034, 44, 48, 49mulgnn 13256 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
5143, 47, 503eqtr4rd 2240 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  ( G 
gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622    |-> cmpt 4094    X. cxp 4661   ` cfv 5258  (class class class)co 5922   Fincfn 6799   1c1 7880   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539   Basecbs 12678   +g cplusg 12755    gsumg cgsu 12928  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-igsum 12930  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgnn0gsum  13258
  Copyright terms: Public domain W3C validator