ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulg1 Unicode version

Theorem mulg1 13199
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulg1  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )

Proof of Theorem mulg1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 8993 . . 3  |-  1  e.  NN
2 mulg1.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2193 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
4 mulg1.m . . . 4  |-  .x.  =  (.g
`  G )
5 eqid 2193 . . . 4  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
62, 3, 4, 5mulgnn 13196 . . 3  |-  ( ( 1  e.  NN  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) ` 
1 ) )
71, 6mpan 424 . 2  |-  ( X  e.  B  ->  (
1  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  1
) )
8 1zzd 9344 . . 3  |-  ( X  e.  B  ->  1  e.  ZZ )
9 elnnuz 9629 . . . 4  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
10 fvconst2g 5772 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
11 simpl 109 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
1210, 11eqeltrd 2270 . . . . 5  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
1312elexd 2773 . . . 4  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
149, 13sylan2br 288 . . 3  |-  ( ( X  e.  B  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
15 simprl 529 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
162basmex 12677 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
17 plusgslid 12730 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1817slotex 12645 . . . . . 6  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
1916, 18syl 14 . . . . 5  |-  ( X  e.  B  ->  ( +g  `  G )  e. 
_V )
2019adantr 276 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
21 simprr 531 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
22 ovexg 5952 . . . 4  |-  ( ( u  e.  _V  /\  ( +g  `  G )  e.  _V  /\  v  e.  _V )  ->  (
u ( +g  `  G
) v )  e. 
_V )
2315, 20, 21, 22syl3anc 1249 . . 3  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u
( +g  `  G ) v )  e.  _V )
248, 14, 23seq3-1 10533 . 2  |-  ( X  e.  B  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) ` 
1 )  =  ( ( NN  X.  { X } ) `  1
) )
25 fvconst2g 5772 . . 3  |-  ( ( X  e.  B  /\  1  e.  NN )  ->  ( ( NN  X.  { X } ) ` 
1 )  =  X )
261, 25mpan2 425 . 2  |-  ( X  e.  B  ->  (
( NN  X.  { X } ) `  1
)  =  X )
277, 24, 263eqtrd 2230 1  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618    X. cxp 4657   ` cfv 5254  (class class class)co 5918   1c1 7873   NNcn 8982   ZZ>=cuz 9592    seqcseq 10518   Basecbs 12618   +g cplusg 12695  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulg2  13201  mulgnn0p1  13203  mulgm1  13212  mulgp1  13225  mulgnnass  13227  gsumfzconst  13411  gsumfzsnfd  13415  mulgrhm  14097
  Copyright terms: Public domain W3C validator