ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulg1 Unicode version

Theorem mulg1 13580
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulg1  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )

Proof of Theorem mulg1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 9082 . . 3  |-  1  e.  NN
2 mulg1.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2207 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
4 mulg1.m . . . 4  |-  .x.  =  (.g
`  G )
5 eqid 2207 . . . 4  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
62, 3, 4, 5mulgnn 13577 . . 3  |-  ( ( 1  e.  NN  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) ` 
1 ) )
71, 6mpan 424 . 2  |-  ( X  e.  B  ->  (
1  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  1
) )
8 1zzd 9434 . . 3  |-  ( X  e.  B  ->  1  e.  ZZ )
9 elnnuz 9720 . . . 4  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
10 fvconst2g 5821 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
11 simpl 109 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
1210, 11eqeltrd 2284 . . . . 5  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
1312elexd 2790 . . . 4  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
149, 13sylan2br 288 . . 3  |-  ( ( X  e.  B  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
15 simprl 529 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
162basmex 13006 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
17 plusgslid 13059 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1817slotex 12974 . . . . . 6  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
1916, 18syl 14 . . . . 5  |-  ( X  e.  B  ->  ( +g  `  G )  e. 
_V )
2019adantr 276 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
21 simprr 531 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
22 ovexg 6001 . . . 4  |-  ( ( u  e.  _V  /\  ( +g  `  G )  e.  _V  /\  v  e.  _V )  ->  (
u ( +g  `  G
) v )  e. 
_V )
2315, 20, 21, 22syl3anc 1250 . . 3  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u
( +g  `  G ) v )  e.  _V )
248, 14, 23seq3-1 10644 . 2  |-  ( X  e.  B  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) ` 
1 )  =  ( ( NN  X.  { X } ) `  1
) )
25 fvconst2g 5821 . . 3  |-  ( ( X  e.  B  /\  1  e.  NN )  ->  ( ( NN  X.  { X } ) ` 
1 )  =  X )
261, 25mpan2 425 . 2  |-  ( X  e.  B  ->  (
( NN  X.  { X } ) `  1
)  =  X )
277, 24, 263eqtrd 2244 1  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643    X. cxp 4691   ` cfv 5290  (class class class)co 5967   1c1 7961   NNcn 9071   ZZ>=cuz 9683    seqcseq 10629   Basecbs 12947   +g cplusg 13024  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulg2  13582  mulgnn0p1  13584  mulgm1  13593  mulgp1  13606  mulgnnass  13608  gsumfzconst  13792  gsumfzsnfd  13796  mulgrhm  14486
  Copyright terms: Public domain W3C validator