ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulg1 Unicode version

Theorem mulg1 12846
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulg1  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )

Proof of Theorem mulg1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 8898 . . 3  |-  1  e.  NN
2 mulg1.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2173 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
4 mulg1.m . . . 4  |-  .x.  =  (.g
`  G )
5 eqid 2173 . . . 4  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
62, 3, 4, 5mulgnn 12845 . . 3  |-  ( ( 1  e.  NN  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) ` 
1 ) )
71, 6mpan 424 . 2  |-  ( X  e.  B  ->  (
1  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  1
) )
8 1zzd 9248 . . 3  |-  ( X  e.  B  ->  1  e.  ZZ )
9 elnnuz 9532 . . . 4  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
10 fvconst2g 5719 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
11 simpl 109 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
1210, 11eqeltrd 2250 . . . . 5  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
1312elexd 2746 . . . 4  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
149, 13sylan2br 288 . . 3  |-  ( ( X  e.  B  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
15 simprl 529 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
162basmex 12483 . . . . . 6  |-  ( X  e.  B  ->  G  e.  _V )
17 plusgslid 12522 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1817slotex 12452 . . . . . 6  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
1916, 18syl 14 . . . . 5  |-  ( X  e.  B  ->  ( +g  `  G )  e. 
_V )
2019adantr 276 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
21 simprr 530 . . . 4  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
22 ovexg 5896 . . . 4  |-  ( ( u  e.  _V  /\  ( +g  `  G )  e.  _V  /\  v  e.  _V )  ->  (
u ( +g  `  G
) v )  e. 
_V )
2315, 20, 21, 22syl3anc 1236 . . 3  |-  ( ( X  e.  B  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u
( +g  `  G ) v )  e.  _V )
248, 14, 23seq3-1 10425 . 2  |-  ( X  e.  B  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) ` 
1 )  =  ( ( NN  X.  { X } ) `  1
) )
25 fvconst2g 5719 . . 3  |-  ( ( X  e.  B  /\  1  e.  NN )  ->  ( ( NN  X.  { X } ) ` 
1 )  =  X )
261, 25mpan2 425 . 2  |-  ( X  e.  B  ->  (
( NN  X.  { X } ) `  1
)  =  X )
277, 24, 263eqtrd 2210 1  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1351    e. wcel 2144   _Vcvv 2733   {csn 3586    X. cxp 4615   ` cfv 5205  (class class class)co 5862   1c1 7784   NNcn 8887   ZZ>=cuz 9496    seqcseq 10410   Basecbs 12425   +g cplusg 12489  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-addass 7885  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-minusg 12739  df-mulg 12840
This theorem is referenced by:  mulg2  12848  mulgnn0p1  12850  mulgm1  12859  mulgp1  12871  mulgnnass  12873
  Copyright terms: Public domain W3C validator