ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnp1 Unicode version

Theorem mulgnnp1 13667
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
mulgnnp1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnnp1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )

Proof of Theorem mulgnnp1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  NN )
2 nnuz 9758 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrdi 2322 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 simplr 528 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
5 simpr 110 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  (
ZZ>= `  1 ) )
65, 2eleqtrrdi 2323 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
7 fvconst2g 5853 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
8 simpl 109 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
97, 8eqeltrd 2306 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
109elexd 2813 . . . . 5  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
114, 6, 10syl2anc 411 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  u )  e.  _V )
12 simprl 529 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  u  e.  _V )
13 mulg1.b . . . . . . . 8  |-  B  =  ( Base `  G
)
1413basmex 13092 . . . . . . 7  |-  ( X  e.  B  ->  G  e.  _V )
15 mulgnnp1.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
16 plusgslid 13145 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 13059 . . . . . . . 8  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
1815, 17eqeltrid 2316 . . . . . . 7  |-  ( G  e.  _V  ->  .+  e.  _V )
1914, 18syl 14 . . . . . 6  |-  ( X  e.  B  ->  .+  e.  _V )
2019ad2antlr 489 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  .+  e.  _V )
21 simprr 531 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  v  e.  _V )
22 ovexg 6035 . . . . 5  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
2312, 20, 21, 22syl3anc 1271 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  (
u  .+  v )  e.  _V )
243, 11, 23seq3p1 10687 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  ( ( NN  X.  { X } ) `  ( N  +  1
) ) ) )
25 id 19 . . . . 5  |-  ( X  e.  B  ->  X  e.  B )
26 peano2nn 9122 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
27 fvconst2g 5853 . . . . 5  |-  ( ( X  e.  B  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( N  +  1 ) )  =  X )
2825, 26, 27syl2anr 290 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( NN  X.  { X } ) `  ( N  +  1
) )  =  X )
2928oveq2d 6017 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  N
)  .+  ( ( NN  X.  { X }
) `  ( N  +  1 ) ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
3024, 29eqtrd 2262 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
31 mulg1.m . . . 4  |-  .x.  =  (.g
`  G )
32 eqid 2229 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
3313, 15, 31, 32mulgnn 13663 . . 3  |-  ( ( ( N  +  1 )  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( N  +  1
) ) )
3426, 33sylan 283 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( N  +  1
) ) )
3513, 15, 31, 32mulgnn 13663 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
3635oveq1d 6016 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  .x.  X )  .+  X
)  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
3730, 34, 363eqtr4d 2272 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    X. cxp 4717   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002   NNcn 9110   ZZ>=cuz 9722    seqcseq 10669   Basecbs 13032   +g cplusg 13110  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulg2  13668  mulgnn0p1  13670  mulgnnass  13694  gsumfzconst  13878
  Copyright terms: Public domain W3C validator