ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnp1 Unicode version

Theorem mulgnnp1 13466
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
mulgnnp1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnnp1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )

Proof of Theorem mulgnnp1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  NN )
2 nnuz 9684 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrdi 2298 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 simplr 528 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
5 simpr 110 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  (
ZZ>= `  1 ) )
65, 2eleqtrrdi 2299 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
7 fvconst2g 5798 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
8 simpl 109 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
97, 8eqeltrd 2282 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
109elexd 2785 . . . . 5  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
114, 6, 10syl2anc 411 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  u )  e.  _V )
12 simprl 529 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  u  e.  _V )
13 mulg1.b . . . . . . . 8  |-  B  =  ( Base `  G
)
1413basmex 12891 . . . . . . 7  |-  ( X  e.  B  ->  G  e.  _V )
15 mulgnnp1.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
16 plusgslid 12944 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 12859 . . . . . . . 8  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
1815, 17eqeltrid 2292 . . . . . . 7  |-  ( G  e.  _V  ->  .+  e.  _V )
1914, 18syl 14 . . . . . 6  |-  ( X  e.  B  ->  .+  e.  _V )
2019ad2antlr 489 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  .+  e.  _V )
21 simprr 531 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  v  e.  _V )
22 ovexg 5978 . . . . 5  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
2312, 20, 21, 22syl3anc 1250 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  (
u  .+  v )  e.  _V )
243, 11, 23seq3p1 10610 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  ( ( NN  X.  { X } ) `  ( N  +  1
) ) ) )
25 id 19 . . . . 5  |-  ( X  e.  B  ->  X  e.  B )
26 peano2nn 9048 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
27 fvconst2g 5798 . . . . 5  |-  ( ( X  e.  B  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( N  +  1 ) )  =  X )
2825, 26, 27syl2anr 290 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( NN  X.  { X } ) `  ( N  +  1
) )  =  X )
2928oveq2d 5960 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  N
)  .+  ( ( NN  X.  { X }
) `  ( N  +  1 ) ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
3024, 29eqtrd 2238 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
31 mulg1.m . . . 4  |-  .x.  =  (.g
`  G )
32 eqid 2205 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
3313, 15, 31, 32mulgnn 13462 . . 3  |-  ( ( ( N  +  1 )  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( N  +  1
) ) )
3426, 33sylan 283 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( N  +  1
) ) )
3513, 15, 31, 32mulgnn 13462 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
3635oveq1d 5959 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  .x.  X )  .+  X
)  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
3730, 34, 363eqtr4d 2248 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633    X. cxp 4673   ` cfv 5271  (class class class)co 5944   1c1 7926    + caddc 7928   NNcn 9036   ZZ>=cuz 9648    seqcseq 10592   Basecbs 12832   +g cplusg 12909  .gcmg 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-minusg 13336  df-mulg 13456
This theorem is referenced by:  mulg2  13467  mulgnn0p1  13469  mulgnnass  13493  gsumfzconst  13677
  Copyright terms: Public domain W3C validator