ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnp1 Unicode version

Theorem mulgnnp1 13336
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
mulgnnp1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnnp1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )

Proof of Theorem mulgnnp1
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  NN )
2 nnuz 9654 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrdi 2289 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  N  e.  ( ZZ>= ` 
1 ) )
4 simplr 528 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  X  e.  B
)
5 simpr 110 . . . . . 6  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  (
ZZ>= `  1 ) )
65, 2eleqtrrdi 2290 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
7 fvconst2g 5779 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
8 simpl 109 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
97, 8eqeltrd 2273 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
109elexd 2776 . . . . 5  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
114, 6, 10syl2anc 411 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { X }
) `  u )  e.  _V )
12 simprl 529 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  u  e.  _V )
13 mulg1.b . . . . . . . 8  |-  B  =  ( Base `  G
)
1413basmex 12762 . . . . . . 7  |-  ( X  e.  B  ->  G  e.  _V )
15 mulgnnp1.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
16 plusgslid 12815 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 12730 . . . . . . . 8  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
1815, 17eqeltrid 2283 . . . . . . 7  |-  ( G  e.  _V  ->  .+  e.  _V )
1914, 18syl 14 . . . . . 6  |-  ( X  e.  B  ->  .+  e.  _V )
2019ad2antlr 489 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  .+  e.  _V )
21 simprr 531 . . . . 5  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  v  e.  _V )
22 ovexg 5959 . . . . 5  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
2312, 20, 21, 22syl3anc 1249 . . . 4  |-  ( ( ( N  e.  NN  /\  X  e.  B )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  (
u  .+  v )  e.  _V )
243, 11, 23seq3p1 10574 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  ( ( NN  X.  { X } ) `  ( N  +  1
) ) ) )
25 id 19 . . . . 5  |-  ( X  e.  B  ->  X  e.  B )
26 peano2nn 9019 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
27 fvconst2g 5779 . . . . 5  |-  ( ( X  e.  B  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( N  +  1 ) )  =  X )
2825, 26, 27syl2anr 290 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( NN  X.  { X } ) `  ( N  +  1
) )  =  X )
2928oveq2d 5941 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  N
)  .+  ( ( NN  X.  { X }
) `  ( N  +  1 ) ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
3024, 29eqtrd 2229 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
31 mulg1.m . . . 4  |-  .x.  =  (.g
`  G )
32 eqid 2196 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
3313, 15, 31, 32mulgnn 13332 . . 3  |-  ( ( ( N  +  1 )  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( N  +  1
) ) )
3426, 33sylan 283 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( N  +  1
) ) )
3513, 15, 31, 32mulgnn 13332 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
3635oveq1d 5940 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  .x.  X )  .+  X
)  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  .+  X ) )
3730, 34, 363eqtr4d 2239 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3623    X. cxp 4662   ` cfv 5259  (class class class)co 5925   1c1 7897    + caddc 7899   NNcn 9007   ZZ>=cuz 9618    seqcseq 10556   Basecbs 12703   +g cplusg 12780  .gcmg 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-minusg 13206  df-mulg 13326
This theorem is referenced by:  mulg2  13337  mulgnn0p1  13339  mulgnnass  13363  gsumfzconst  13547
  Copyright terms: Public domain W3C validator