ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcfaclem Unicode version

Theorem pcfaclem 12487
Description: Lemma for pcfac 12488. (Contributed by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
pcfaclem  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( |_ `  ( N  / 
( P ^ M
) ) )  =  0 )

Proof of Theorem pcfaclem
StepHypRef Expression
1 nn0ge0 9265 . . . 4  |-  ( N  e.  NN0  ->  0  <_  N )
213ad2ant1 1020 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  0  <_  N )
3 nn0re 9249 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  RR )
433ad2ant1 1020 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  N  e.  RR )
5 prmnn 12248 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
653ad2ant3 1022 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  P  e.  NN )
7 eluznn0 9664 . . . . . . 7  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN0 )
873adant3 1019 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  M  e.  NN0 )
96, 8nnexpcld 10766 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P ^ M )  e.  NN )
109nnred 8995 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P ^ M )  e.  RR )
119nngt0d 9026 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  0  <  ( P ^ M
) )
12 ge0div 8890 . . . 4  |-  ( ( N  e.  RR  /\  ( P ^ M )  e.  RR  /\  0  <  ( P ^ M
) )  ->  (
0  <_  N  <->  0  <_  ( N  /  ( P ^ M ) ) ) )
134, 10, 11, 12syl3anc 1249 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  (
0  <_  N  <->  0  <_  ( N  /  ( P ^ M ) ) ) )
142, 13mpbid 147 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  0  <_  ( N  /  ( P ^ M ) ) )
158nn0red 9294 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  M  e.  RR )
16 eluzle 9604 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
17163ad2ant2 1021 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  N  <_  M )
18 prmuz2 12269 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
19183ad2ant3 1022 . . . . . . 7  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  P  e.  ( ZZ>= `  2 )
)
20 bernneq3 10733 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN0 )  ->  M  <  ( P ^ M
) )
2119, 8, 20syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  M  <  ( P ^ M
) )
224, 15, 10, 17, 21lelttrd 8144 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  N  <  ( P ^ M
) )
239nncnd 8996 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P ^ M )  e.  CC )
2423mulridd 8036 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  (
( P ^ M
)  x.  1 )  =  ( P ^ M ) )
2522, 24breqtrrd 4057 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  N  <  ( ( P ^ M )  x.  1 ) )
26 1red 8034 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  1  e.  RR )
27 ltdivmul 8895 . . . . 5  |-  ( ( N  e.  RR  /\  1  e.  RR  /\  (
( P ^ M
)  e.  RR  /\  0  <  ( P ^ M ) ) )  ->  ( ( N  /  ( P ^ M ) )  <  1  <->  N  <  ( ( P ^ M )  x.  1 ) ) )
284, 26, 10, 11, 27syl112anc 1253 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  (
( N  /  ( P ^ M ) )  <  1  <->  N  <  ( ( P ^ M
)  x.  1 ) ) )
2925, 28mpbird 167 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( N  /  ( P ^ M ) )  <  1 )
30 0p1e1 9096 . . 3  |-  ( 0  +  1 )  =  1
3129, 30breqtrrdi 4071 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( N  /  ( P ^ M ) )  < 
( 0  +  1 ) )
32 simp1 999 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  N  e.  NN0 )
3332nn0zd 9437 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  N  e.  ZZ )
34 znq 9689 . . . 4  |-  ( ( N  e.  ZZ  /\  ( P ^ M )  e.  NN )  -> 
( N  /  ( P ^ M ) )  e.  QQ )
3533, 9, 34syl2anc 411 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( N  /  ( P ^ M ) )  e.  QQ )
36 0z 9328 . . 3  |-  0  e.  ZZ
37 flqbi 10359 . . 3  |-  ( ( ( N  /  ( P ^ M ) )  e.  QQ  /\  0  e.  ZZ )  ->  (
( |_ `  ( N  /  ( P ^ M ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ M
) )  /\  ( N  /  ( P ^ M ) )  < 
( 0  +  1 ) ) ) )
3835, 36, 37sylancl 413 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  (
( |_ `  ( N  /  ( P ^ M ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ M
) )  /\  ( N  /  ( P ^ M ) )  < 
( 0  +  1 ) ) ) )
3914, 31, 38mpbir2and 946 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( |_ `  ( N  / 
( P ^ M
) ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    / cdiv 8691   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   |_cfl 10337   ^cexp 10609   Primecprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-prm 12246
This theorem is referenced by:  pcfac  12488
  Copyright terms: Public domain W3C validator