ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distnq0r Unicode version

Theorem distnq0r 7575
Description: Multiplication of nonnegative fractions is distributive. Version of distrnq0 7571 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
distnq0r  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( ( B +Q0  C ) ·Q0  A )  =  ( ( B ·Q0  A ) +Q0  ( C ·Q0 
A ) ) )

Proof of Theorem distnq0r
StepHypRef Expression
1 distrnq0 7571 . 2  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  ( B +Q0  C
) )  =  ( ( A ·Q0 
B ) +Q0  ( A ·Q0 
C ) ) )
2 addclnq0 7563 . . . 4  |-  ( ( B  e. Q0  /\  C  e. Q0 )  ->  ( B +Q0  C )  e. Q0 )
3 mulcomnq0 7572 . . . 4  |-  ( ( A  e. Q0  /\  ( B +Q0  C )  e. Q0 )  ->  ( A ·Q0  ( B +Q0  C
) )  =  ( ( B +Q0  C ) ·Q0 
A ) )
42, 3sylan2 286 . . 3  |-  ( ( A  e. Q0  /\  ( B  e. Q0  /\  C  e. Q0 ) )  ->  ( A ·Q0  ( B +Q0  C
) )  =  ( ( B +Q0  C ) ·Q0 
A ) )
543impb 1201 . 2  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  ( B +Q0  C
) )  =  ( ( B +Q0  C ) ·Q0 
A ) )
6 mulcomnq0 7572 . . . 4  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  =  ( B ·Q0 
A ) )
763adant3 1019 . . 3  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  B )  =  ( B ·Q0 
A ) )
8 mulcomnq0 7572 . . . 4  |-  ( ( A  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  C )  =  ( C ·Q0 
A ) )
983adant2 1018 . . 3  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  C )  =  ( C ·Q0 
A ) )
107, 9oveq12d 5961 . 2  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( ( A ·Q0  B
) +Q0  ( A ·Q0 
C ) )  =  ( ( B ·Q0 
A ) +Q0  ( C ·Q0 
A ) ) )
111, 5, 103eqtr3d 2245 1  |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( ( B +Q0  C ) ·Q0  A )  =  ( ( B ·Q0  A ) +Q0  ( C ·Q0 
A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175  (class class class)co 5943  Q0cnq0 7399   +Q0 cplq0 7401   ·Q0 cmq0 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-mi 7418  df-enq0 7536  df-nq0 7537  df-plq0 7539  df-mq0 7540
This theorem is referenced by:  prarloclemcalc  7614
  Copyright terms: Public domain W3C validator