![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > distnq0r | GIF version |
Description: Multiplication of nonnegative fractions is distributive. Version of distrnq0 7472 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.) |
Ref | Expression |
---|---|
distnq0r | ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distrnq0 7472 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))) | |
2 | addclnq0 7464 | . . . 4 ⊢ ((𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐵 +Q0 𝐶) ∈ Q0) | |
3 | mulcomnq0 7473 | . . . 4 ⊢ ((𝐴 ∈ Q0 ∧ (𝐵 +Q0 𝐶) ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴)) | |
4 | 2, 3 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ Q0 ∧ (𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0)) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴)) |
5 | 4 | 3impb 1200 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴)) |
6 | mulcomnq0 7473 | . . . 4 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) | |
7 | 6 | 3adant3 1018 | . . 3 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) |
8 | mulcomnq0 7473 | . . . 4 ⊢ ((𝐴 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴)) | |
9 | 8 | 3adant2 1017 | . . 3 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴)) |
10 | 7, 9 | oveq12d 5906 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) |
11 | 1, 5, 10 | 3eqtr3d 2228 | 1 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 (class class class)co 5888 Q0cnq0 7300 +Q0 cplq0 7302 ·Q0 cmq0 7303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-oadd 6435 df-omul 6436 df-er 6549 df-ec 6551 df-qs 6555 df-ni 7317 df-mi 7319 df-enq0 7437 df-nq0 7438 df-plq0 7440 df-mq0 7441 |
This theorem is referenced by: prarloclemcalc 7515 |
Copyright terms: Public domain | W3C validator |