![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > distnq0r | GIF version |
Description: Multiplication of nonnegative fractions is distributive. Version of distrnq0 7519 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.) |
Ref | Expression |
---|---|
distnq0r | ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distrnq0 7519 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))) | |
2 | addclnq0 7511 | . . . 4 ⊢ ((𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐵 +Q0 𝐶) ∈ Q0) | |
3 | mulcomnq0 7520 | . . . 4 ⊢ ((𝐴 ∈ Q0 ∧ (𝐵 +Q0 𝐶) ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴)) | |
4 | 2, 3 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ Q0 ∧ (𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0)) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴)) |
5 | 4 | 3impb 1201 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴)) |
6 | mulcomnq0 7520 | . . . 4 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) | |
7 | 6 | 3adant3 1019 | . . 3 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) |
8 | mulcomnq0 7520 | . . . 4 ⊢ ((𝐴 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴)) | |
9 | 8 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴)) |
10 | 7, 9 | oveq12d 5936 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) |
11 | 1, 5, 10 | 3eqtr3d 2234 | 1 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 Q0cnq0 7347 +Q0 cplq0 7349 ·Q0 cmq0 7350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-mi 7366 df-enq0 7484 df-nq0 7485 df-plq0 7487 df-mq0 7488 |
This theorem is referenced by: prarloclemcalc 7562 |
Copyright terms: Public domain | W3C validator |