ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distnq0r GIF version

Theorem distnq0r 7398
Description: Multiplication of nonnegative fractions is distributive. Version of distrnq0 7394 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
distnq0r ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))

Proof of Theorem distnq0r
StepHypRef Expression
1 distrnq0 7394 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
2 addclnq0 7386 . . . 4 ((𝐵Q0𝐶Q0) → (𝐵 +Q0 𝐶) ∈ Q0)
3 mulcomnq0 7395 . . . 4 ((𝐴Q0 ∧ (𝐵 +Q0 𝐶) ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
42, 3sylan2 284 . . 3 ((𝐴Q0 ∧ (𝐵Q0𝐶Q0)) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
543impb 1188 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
6 mulcomnq0 7395 . . . 4 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
763adant3 1006 . . 3 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
8 mulcomnq0 7395 . . . 4 ((𝐴Q0𝐶Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴))
983adant2 1005 . . 3 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴))
107, 9oveq12d 5857 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
111, 5, 103eqtr3d 2205 1 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135  (class class class)co 5839  Q0cnq0 7222   +Q0 cplq0 7224   ·Q0 cmq0 7225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-iord 4341  df-on 4343  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-irdg 6332  df-oadd 6382  df-omul 6383  df-er 6495  df-ec 6497  df-qs 6501  df-ni 7239  df-mi 7241  df-enq0 7359  df-nq0 7360  df-plq0 7362  df-mq0 7363
This theorem is referenced by:  prarloclemcalc  7437
  Copyright terms: Public domain W3C validator