ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distnq0r GIF version

Theorem distnq0r 7278
Description: Multiplication of nonnegative fractions is distributive. Version of distrnq0 7274 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
distnq0r ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))

Proof of Theorem distnq0r
StepHypRef Expression
1 distrnq0 7274 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
2 addclnq0 7266 . . . 4 ((𝐵Q0𝐶Q0) → (𝐵 +Q0 𝐶) ∈ Q0)
3 mulcomnq0 7275 . . . 4 ((𝐴Q0 ∧ (𝐵 +Q0 𝐶) ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
42, 3sylan2 284 . . 3 ((𝐴Q0 ∧ (𝐵Q0𝐶Q0)) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
543impb 1177 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
6 mulcomnq0 7275 . . . 4 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
763adant3 1001 . . 3 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
8 mulcomnq0 7275 . . . 4 ((𝐴Q0𝐶Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴))
983adant2 1000 . . 3 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴))
107, 9oveq12d 5792 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
111, 5, 103eqtr3d 2180 1 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  (class class class)co 5774  Q0cnq0 7102   +Q0 cplq0 7104   ·Q0 cmq0 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-mi 7121  df-enq0 7239  df-nq0 7240  df-plq0 7242  df-mq0 7243
This theorem is referenced by:  prarloclemcalc  7317
  Copyright terms: Public domain W3C validator