ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distnq0r GIF version

Theorem distnq0r 7476
Description: Multiplication of nonnegative fractions is distributive. Version of distrnq0 7472 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
distnq0r ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))

Proof of Theorem distnq0r
StepHypRef Expression
1 distrnq0 7472 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
2 addclnq0 7464 . . . 4 ((𝐵Q0𝐶Q0) → (𝐵 +Q0 𝐶) ∈ Q0)
3 mulcomnq0 7473 . . . 4 ((𝐴Q0 ∧ (𝐵 +Q0 𝐶) ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
42, 3sylan2 286 . . 3 ((𝐴Q0 ∧ (𝐵Q0𝐶Q0)) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
543impb 1200 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐵 +Q0 𝐶) ·Q0 𝐴))
6 mulcomnq0 7473 . . . 4 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
763adant3 1018 . . 3 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
8 mulcomnq0 7473 . . . 4 ((𝐴Q0𝐶Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴))
983adant2 1017 . . 3 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 𝐶) = (𝐶 ·Q0 𝐴))
107, 9oveq12d 5906 . 2 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
111, 5, 103eqtr3d 2228 1 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979   = wceq 1363  wcel 2158  (class class class)co 5888  Q0cnq0 7300   +Q0 cplq0 7302   ·Q0 cmq0 7303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-oadd 6435  df-omul 6436  df-er 6549  df-ec 6551  df-qs 6555  df-ni 7317  df-mi 7319  df-enq0 7437  df-nq0 7438  df-plq0 7440  df-mq0 7441
This theorem is referenced by:  prarloclemcalc  7515
  Copyright terms: Public domain W3C validator