ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpsi Unicode version

Theorem eltpsi 14455
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
eltpsi.k  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
eltpsi.u  |-  A  = 
U. J
eltpsi.j  |-  J  e. 
Top
Assertion
Ref Expression
eltpsi  |-  K  e. 
TopSp

Proof of Theorem eltpsi
StepHypRef Expression
1 eltpsi.j . . 3  |-  J  e. 
Top
2 eltpsi.u . . . 4  |-  A  = 
U. J
32toptopon 14432 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  A ) )
41, 3mpbi 145 . 2  |-  J  e.  (TopOn `  A )
5 eltpsi.k . . 3  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
65eltpsg 14454 . 2  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)
74, 6ax-mp 5 1  |-  K  e. 
TopSp
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   {cpr 3633   <.cop 3635   U.cuni 3849   ` cfv 5270   ndxcnx 12771   Basecbs 12774  TopSetcts 12857   Topctop 14411  TopOnctopon 14424   TopSpctps 14444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-ndx 12777  df-slot 12778  df-base 12780  df-tset 12870  df-rest 13015  df-topn 13016  df-top 14412  df-topon 14425  df-topsp 14445
This theorem is referenced by:  distps  14505  retps  14941
  Copyright terms: Public domain W3C validator