Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltpsi | Unicode version |
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
eltpsi.k | TopSet |
eltpsi.u | |
eltpsi.j |
Ref | Expression |
---|---|
eltpsi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpsi.j | . . 3 | |
2 | eltpsi.u | . . . 4 | |
3 | 2 | toptopon 12769 | . . 3 TopOn |
4 | 1, 3 | mpbi 144 | . 2 TopOn |
5 | eltpsi.k | . . 3 TopSet | |
6 | 5 | eltpsg 12791 | . 2 TopOn |
7 | 4, 6 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 cpr 3582 cop 3584 cuni 3794 cfv 5196 cnx 12400 cbs 12403 TopSetcts 12473 ctop 12748 TopOnctopon 12761 ctps 12781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-pre-ltirr 7873 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-ltxr 7946 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-7 8929 df-8 8930 df-9 8931 df-ndx 12406 df-slot 12407 df-base 12409 df-tset 12486 df-rest 12568 df-topn 12569 df-top 12749 df-topon 12762 df-topsp 12782 |
This theorem is referenced by: distps 12844 retps 13280 |
Copyright terms: Public domain | W3C validator |