ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpsi Unicode version

Theorem eltpsi 12833
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
eltpsi.k  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
eltpsi.u  |-  A  = 
U. J
eltpsi.j  |-  J  e. 
Top
Assertion
Ref Expression
eltpsi  |-  K  e. 
TopSp

Proof of Theorem eltpsi
StepHypRef Expression
1 eltpsi.j . . 3  |-  J  e. 
Top
2 eltpsi.u . . . 4  |-  A  = 
U. J
32toptopon 12810 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  A ) )
41, 3mpbi 144 . 2  |-  J  e.  (TopOn `  A )
5 eltpsi.k . . 3  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
65eltpsg 12832 . 2  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)
74, 6ax-mp 5 1  |-  K  e. 
TopSp
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   {cpr 3584   <.cop 3586   U.cuni 3796   ` cfv 5198   ndxcnx 12413   Basecbs 12416  TopSetcts 12486   Topctop 12789  TopOnctopon 12802   TopSpctps 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-ndx 12419  df-slot 12420  df-base 12422  df-tset 12499  df-rest 12581  df-topn 12582  df-top 12790  df-topon 12803  df-topsp 12823
This theorem is referenced by:  distps  12885  retps  13321
  Copyright terms: Public domain W3C validator