Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zmulcld | Unicode version |
Description: Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 | |
zaddcld.1 |
Ref | Expression |
---|---|
zmulcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 | |
2 | zaddcld.1 | . 2 | |
3 | zmulcl 9265 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 (class class class)co 5853 cmul 7779 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: qapne 9598 qtri3or 10199 2tnp1ge0ge0 10257 flhalf 10258 intfracq 10276 zmodcl 10300 modqmul1 10333 addmodlteq 10354 sqoddm1div8 10629 eirraplem 11739 dvdscmulr 11782 dvdsmulcr 11783 modmulconst 11785 dvds2ln 11786 dvdsmod 11822 even2n 11833 2tp1odd 11843 ltoddhalfle 11852 m1expo 11859 m1exp1 11860 divalglemqt 11878 modremain 11888 flodddiv4 11893 gcdaddm 11939 gcdmultipled 11948 bezoutlemnewy 11951 bezoutlemstep 11952 bezoutlembi 11960 mulgcd 11971 dvdsmulgcd 11980 bezoutr 11987 lcmval 12017 lcmcllem 12021 lcmgcdlem 12031 mulgcddvds 12048 rpmulgcd2 12049 divgcdcoprm0 12055 cncongr1 12057 cncongr2 12058 prmind2 12074 exprmfct 12092 2sqpwodd 12130 hashdvds 12175 phimullem 12179 eulerthlem1 12181 eulerthlema 12184 eulerthlemh 12185 eulerthlemth 12186 prmdiv 12189 prmdiveq 12190 pythagtriplem2 12220 pythagtrip 12237 pcpremul 12247 pcqmul 12257 pcaddlem 12292 prmpwdvds 12307 4sqlem5 12334 4sqlem10 12339 oddennn 12347 lgsval 13699 lgsdir2lem5 13727 lgsdirprm 13729 lgsdir 13730 lgsdilem2 13731 lgsdi 13732 lgsne0 13733 2sqlem3 13747 2sqlem4 13748 |
Copyright terms: Public domain | W3C validator |