Theorem List for Intuitionistic Logic Explorer - 11901-12000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | fsumsersdc 11901* |
Special case of series sum over a finite upper integer index set.
(Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim
Kingdon, 5-May-2023.)
|
      
     
               
    
DECID
                 |
| |
| Theorem | fsum3cvg3 11902* |
A finite sum is convergent. (Contributed by Mario Carneiro,
24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
                 DECID            
        

 |
| |
| Theorem | fsum3ser 11903* |
A finite sum expressed in terms of a partial sum of an infinite series.
The recursive definition follows as fsum1 11918 and fsump1 11926, which should
make our notation clear and from which, along with closure fsumcl 11906, we
will derive the basic properties of finite sums. (Contributed by NM,
11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
|
      
                 
       
        |
| |
| Theorem | fsumcl2lem 11904* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by Mario Carneiro, 3-Jun-2014.)
|
    
 
      
        |
| |
| Theorem | fsumcllem 11905* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro,
3-Jun-2014.)
|
    
 
      
        |
| |
| Theorem | fsumcl 11906* |
Closure of a finite sum of complex numbers    . (Contributed
by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
       
  |
| |
| Theorem | fsumrecl 11907* |
Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
       
  |
| |
| Theorem | fsumzcl 11908* |
Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
       
  |
| |
| Theorem | fsumnn0cl 11909* |
Closure of a finite sum of nonnegative integers. (Contributed by
Mario Carneiro, 23-Apr-2015.)
|
       
  |
| |
| Theorem | fsumrpcl 11910* |
Closure of a finite sum of positive reals. (Contributed by Mario
Carneiro, 3-Jun-2014.)
|
         
  |
| |
| Theorem | fsumzcl2 11911* |
A finite sum with integer summands is an integer. (Contributed by
Alexander van der Vekens, 31-Aug-2018.)
|
  
 
  |
| |
| Theorem | fsumadd 11912* |
The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised
by Mario Carneiro, 22-Apr-2014.)
|
       
     
      |
| |
| Theorem | fsumsplit 11913* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
                 
    |
| |
| Theorem | fsumsplitf 11914* |
Split a sum into two parts. A version of fsumsplit 11913 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
                   
    |
| |
| Theorem | sumsnf 11915* |
A sum of a singleton is the term. A version of sumsn 11917 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
  
          |
| |
| Theorem | fsumsplitsn 11916* |
Separate out a term in a finite sum. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
              
           
   |
| |
| Theorem | sumsn 11917* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
           |
| |
| Theorem | fsum1 11918* |
The finite sum of    from to (i.e. a sum with
only one term) is i.e.    . (Contributed by NM,
8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
             |
| |
| Theorem | sumpr 11919* |
A sum over a pair is the sum of the elements. (Contributed by Thierry
Arnoux, 12-Dec-2016.)
|
  
 
    
         

   |
| |
| Theorem | sumtp 11920* |
A sum over a triple is the sum of the elements. (Contributed by AV,
24-Jul-2020.)
|
  
 
 
    
                 
   |
| |
| Theorem | sumsns 11921* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
    ![]_ ]_](_urbrack.gif)
       ![]_ ]_](_urbrack.gif)   |
| |
| Theorem | fsumm1 11922* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 26-Apr-2014.)
|
            
 
       
            |
| |
| Theorem | fzosump1 11923* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 13-Apr-2016.)
|
            
 
    ..^       ..^ 
   |
| |
| Theorem | fsum1p 11924* |
Separate out the first term in a finite sum. (Contributed by NM,
3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
            
 
       

           |
| |
| Theorem | fsumsplitsnun 11925* |
Separate out a term in a finite sum by splitting the sum into two parts.
(Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV,
17-Dec-2021.)
|
                  
  ![]_ ]_](_urbrack.gif)    |
| |
| Theorem | fsump1 11926* |
The addition of the next term in a finite sum of    is the
current term plus i.e.    . (Contributed by NM,
4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
           
      
      
    
        |
| |
| Theorem | isumclim 11927* |
An infinite sum equals the value its series converges to.
(Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
       
             
  
  |
| |
| Theorem | isumclim2 11928* |
A converging series converges to its infinite sum. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
       
              
      |
| |
| Theorem | isumclim3 11929* |
The sequence of partial finite sums of a converging infinite series
converges to the infinite sum of the series. Note that must not
occur in .
(Contributed by NM, 9-Jan-2006.) (Revised by Mario
Carneiro, 23-Apr-2014.)
|
                             |
| |
| Theorem | sumnul 11930* |
The sum of a non-convergent infinite series evaluates to the empty
set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario
Carneiro, 23-Apr-2014.)
|
       
          
  
    |
| |
| Theorem | isumcl 11931* |
The sum of a converging infinite series is a complex number.
(Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
       
              
   |
| |
| Theorem | isummulc2 11932* |
An infinite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
       
              
    
     |
| |
| Theorem | isummulc1 11933* |
An infinite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
       
              
          |
| |
| Theorem | isumdivapc 11934* |
An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
       
              
  #           |
| |
| Theorem | isumrecl 11935* |
The sum of a converging infinite real series is a real number.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
       
              
   |
| |
| Theorem | isumge0 11936* |
An infinite sum of nonnegative terms is nonnegative. (Contributed by
Mario Carneiro, 28-Apr-2014.)
|
       
                   
  |
| |
| Theorem | isumadd 11937* |
Addition of infinite sums. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
       
           
              
  
   
      |
| |
| Theorem | sumsplitdc 11938* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
            
   
DECID
   
DECID
               
            
  
    

  
    
      |
| |
| Theorem | fsump1i 11939* |
Optimized version of fsump1 11926 for making sums of a concrete number of
terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
|
      
               
    
         |
| |
| Theorem | fsum2dlemstep 11940* |
Lemma for fsum2d 11941- induction step. (Contributed by Mario
Carneiro,
23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
|
        
    
 
   
        
 
               

            |
| |
| Theorem | fsum2d 11941* |
Write a double sum as a sum over a two-dimensional region. Note that
   is a function of . (Contributed by Mario Carneiro,
27-Apr-2014.)
|
        
    
 
   

       |
| |
| Theorem | fsumxp 11942* |
Combine two sums into a single sum over the cartesian product.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
           
 
   
      |
| |
| Theorem | fsumcnv 11943* |
Transform a region of summation by using the converse operation.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
        
               |
| |
| Theorem | fisumcom2 11944* |
Interchange order of summation. Note that    and   
are not necessarily constant expressions. (Contributed by Mario
Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
(Proof shortened by JJ, 2-Aug-2021.)
|
     
                
 
   
    |
| |
| Theorem | fsumcom 11945* |
Interchange order of summation. (Contributed by NM, 15-Nov-2005.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
     
  
        |
| |
| Theorem | fsum0diaglem 11946* |
Lemma for fisum0diag 11947. (Contributed by Mario Carneiro,
28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
                 
         |
| |
| Theorem | fisum0diag 11947* |
Two ways to express "the sum of     over the
triangular
region , ,
". (Contributed
by NM,
31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
      
                                          |
| |
| Theorem | mptfzshft 11948* |
1-1 onto function in maps-to notation which shifts a finite set of
sequential integers. (Contributed by AV, 24-Aug-2019.)
|
                                     |
| |
| Theorem | fsumrev 11949* |
Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised
by Mario Carneiro, 24-Apr-2014.)
|
            
   
       
      
     |
| |
| Theorem | fsumshft 11950* |
Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.)
(Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV,
8-Sep-2019.)
|
            
           
      
     |
| |
| Theorem | fsumshftm 11951* |
Negative index shift of a finite sum. (Contributed by NM,
28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
            
           
      
     |
| |
| Theorem | fisumrev2 11952* |
Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised
by Mario Carneiro, 13-Apr-2016.)
|
     
    
    

       
        |
| |
| Theorem | fisum0diag2 11953* |
Two ways to express "the sum of     over the
triangular
region ,
,
". (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
  
         
                                        |
| |
| Theorem | fsummulc2 11954* |
A finite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
     
     
     |
| |
| Theorem | fsummulc1 11955* |
A finite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
     
           |
| |
| Theorem | fsumdivapc 11956* |
A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
     
   #           |
| |
| Theorem | fsumneg 11957* |
Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
             |
| |
| Theorem | fsumsub 11958* |
Split a finite sum over a subtraction. (Contributed by Scott Fenton,
12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
       
     
      |
| |
| Theorem | fsum2mul 11959* |
Separate the nested sum of the product       .
(Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
     
                 |
| |
| Theorem | fsumconst 11960* |
The sum of constant terms ( is not free in ). (Contributed
by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
   
 ♯     |
| |
| Theorem | fsumdifsnconst 11961* |
The sum of constant terms ( is not free in ) over an index
set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
|
 
 
       ♯      |
| |
| Theorem | modfsummodlem1 11962* |
Lemma for modfsummod 11964. (Contributed by Alexander van der Vekens,
1-Sep-2018.)
|
         ![]_ ]_](_urbrack.gif)   |
| |
| Theorem | modfsummodlemstep 11963* |
Induction step for modfsummod 11964. (Contributed by Alexander van der
Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
|
                
   
     
     
            |
| |
| Theorem | modfsummod 11964* |
A finite sum modulo a positive integer equals the finite sum of their
summands modulo the positive integer, modulo the positive integer.
(Contributed by Alexander van der Vekens, 1-Sep-2018.)
|
     
    
       |
| |
| Theorem | fsumge0 11965* |
If all of the terms of a finite sum are nonnegative, so is the sum.
(Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
       
   
  |
| |
| Theorem | fsumlessfi 11966* |
A shorter sum of nonnegative terms is no greater than a longer one.
(Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon,
12-Oct-2022.)
|
       
           |
| |
| Theorem | fsumge1 11967* |
A sum of nonnegative numbers is greater than or equal to any one of
its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof
shortened by Mario Carneiro, 4-Jun-2014.)
|
       
  
       |
| |
| Theorem | fsum00 11968* |
A sum of nonnegative numbers is zero iff all terms are zero.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 24-Apr-2014.)
|
       
    

   |
| |
| Theorem | fsumle 11969* |
If all of the terms of finite sums compare, so do the sums.
(Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
       
    
      |
| |
| Theorem | fsumlt 11970* |
If every term in one finite sum is less than the corresponding term in
another, then the first sum is less than the second. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
|
         
      
    |
| |
| Theorem | fsumabs 11971* |
Generalized triangle inequality: the absolute value of a finite sum is
less than or equal to the sum of absolute values. (Contributed by NM,
9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
                   |
| |
| Theorem | telfsumo 11972* |
Sum of a telescoping series, using half-open intervals. (Contributed by
Mario Carneiro, 2-May-2016.)
|
  
   
 
 
           
    ..^   
    |
| |
| Theorem | telfsumo2 11973* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
2-May-2016.)
|
  
   
 
 
           
    ..^   
    |
| |
| Theorem | telfsum 11974* |
Sum of a telescoping series. (Contributed by Scott Fenton,
24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
  
   
 

  
                                |
| |
| Theorem | telfsum2 11975* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
  
   
 

  
                                |
| |
| Theorem | fsumparts 11976* |
Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
|
      

   
                     
    
    ..^               ..^         |
| |
| Theorem | fsumrelem 11977* |
Lemma for fsumre 11978, fsumim 11979, and fsumcj 11980. (Contributed by Mario
Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
                       
           
       |
| |
| Theorem | fsumre 11978* |
The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
           
       |
| |
| Theorem | fsumim 11979* |
The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
           
       |
| |
| Theorem | fsumcj 11980* |
The complex conjugate of a sum. (Contributed by Paul Chapman,
9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
|
           
       |
| |
| Theorem | iserabs 11981* |
Generalized triangle inequality: the absolute value of an infinite sum
is less than or equal to the sum of absolute values. (Contributed by
Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
|
       
    
                                  |
| |
| Theorem | cvgcmpub 11982* |
An upper bound for the limit of a real infinite series. This theorem
can also be used to compare two infinite series. (Contributed by Mario
Carneiro, 24-Mar-2014.)
|
       
                 
    
  
             |
| |
| Theorem | fsumiun 11983* |
Sum over a disjoint indexed union. (Contributed by Mario Carneiro,
1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
       Disj    
 
   
    |
| |
| Theorem | hashiun 11984* |
The cardinality of a disjoint indexed union. (Contributed by Mario
Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
       Disj   ♯  
 ♯    |
| |
| Theorem | hash2iun 11985* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
       
   Disj    
 Disj   ♯   
  ♯    |
| |
| Theorem | hash2iun1dif1 11986* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
       
   Disj 
    Disj   
 ♯    ♯   
 ♯   ♯      |
| |
| Theorem | hashrabrex 11987* |
The number of elements in a class abstraction with a restricted
existential quantification. (Contributed by Alexander van der Vekens,
29-Jul-2018.)
|
         Disj     ♯      ♯      |
| |
| Theorem | hashuni 11988* |
The cardinality of a disjoint union. (Contributed by Mario Carneiro,
24-Jan-2015.)
|
     Disj   ♯   
♯    |
| |
| 4.9.3 The binomial theorem
|
| |
| Theorem | binomlem 11989* |
Lemma for binom 11990 (binomial theorem). Inductive step.
(Contributed by
NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
             
                                                               |
| |
| Theorem | binom 11990* |
The binomial theorem:     is the sum from to
of              . Theorem
15-2.8 of [Gleason] p. 296. This part
of the proof sets up the
induction and does the base case, with the bulk of the work (the
induction step) in binomlem 11989. This is Metamath 100 proof #44.
(Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
        
                        |
| |
| Theorem | binom1p 11991* |
Special case of the binomial theorem for     .
(Contributed by Paul Chapman, 10-May-2007.)
|
        
                |
| |
| Theorem | binom11 11992* |
Special case of the binomial theorem for   .
(Contributed by
Mario Carneiro, 13-Mar-2014.)
|
    
          |
| |
| Theorem | binom1dif 11993* |
A summation for the difference between       and
    .
(Contributed by Scott Fenton, 9-Apr-2014.) (Revised by
Mario Carneiro, 22-May-2014.)
|
                         
       |
| |
| Theorem | bcxmaslem1 11994 |
Lemma for bcxmas 11995. (Contributed by Paul Chapman,
18-May-2007.)
|
   
       |
| |
| Theorem | bcxmas 11995* |
Parallel summation (Christmas Stocking) theorem for Pascal's Triangle.
(Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
       
         
   |
| |
| 4.9.4 Infinite sums (cont.)
|
| |
| Theorem | isumshft 11996* |
Index shift of an infinite sum. (Contributed by Paul Chapman,
31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
            
          
   |
| |
| Theorem | isumsplit 11997* |
Split off the first
terms of an infinite sum. (Contributed by
Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
|
                          
  
           |
| |
| Theorem | isum1p 11998* |
The infinite sum of a converging infinite series equals the first term
plus the infinite sum of the rest of it. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
       
              
     
           |
| |
| Theorem | isumnn0nn 11999* |
Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed
by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
                  


    |
| |
| Theorem | isumrpcl 12000* |
The infinite sum of positive reals is positive. (Contributed by Paul
Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
                          
   |