HomeHome Intuitionistic Logic Explorer
Theorem List (p. 120 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11901-12000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexplecnv 11901* A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_  ( A ^ k ) )   =>    |-  ( ph  ->  F  ~~>  0 )
 
Theoremgeosergap 11902* The value of the finite geometric series  A ^ M  +  A ^ ( M  + 
1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ N ) ( A ^ k
 )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
 
Theoremgeoserap 11903* The value of the finite geometric series  1  +  A ^
1  +  A ^
2  +...  +  A ^
( N  -  1 ). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 )  =  ( ( 1  -  ( A ^ N ) ) 
 /  ( 1  -  A ) ) )
 
Theorempwm1geoserap1 11904* The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  (
 ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 ) ) )
 
Theoremabsltap 11905 Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  B )   =>    |-  ( ph  ->  A #  B )
 
Theoremabsgtap 11906 Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B  <  ( abs `  A ) )   =>    |-  ( ph  ->  A #  B )
 
Theoremgeolim 11907* The partial sums in the infinite series  1  +  A ^
1  +  A ^
2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( A ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeolim2 11908* The partial sums in the geometric series  A ^ M  +  A ^ ( M  + 
1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  =  ( A ^
 k ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
 
Theoremgeoreclim 11909* The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  1  <  ( abs `  A ) )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( ( 1  /  A ) ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( A  /  ( A  -  1 ) ) )
 
Theoremgeo2sum 11910* The value of the finite geometric series  2 ^ -u 1  +  2 ^ -u 2  +...  +  2 ^
-u N, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  sum_ k  e.  (
 1 ... N ) ( A  /  ( 2 ^ k ) )  =  ( A  -  ( A  /  (
 2 ^ N ) ) ) )
 
Theoremgeo2sum2 11911* The value of the finite geometric series  1  +  2  + 
4  +  8  +...  +  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 7-Sep-2016.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k )  =  ( ( 2 ^ N )  -  1
 ) )
 
Theoremgeo2lim 11912* The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
 |-  F  =  ( k  e.  NN  |->  ( A 
 /  ( 2 ^
 k ) ) )   =>    |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
 
Theoremgeoisum 11913* The infinite sum of  1  +  A ^ 1  +  A ^ 2... is  ( 1  /  ( 1  -  A ) ). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeoisumr 11914* The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  1  <  ( abs `  A ) ) 
 ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^ k
 )  =  ( A 
 /  ( A  -  1 ) ) )
 
Theoremgeoisum1 11915* The infinite sum of  A ^ 1  +  A ^ 2... is  ( A  /  ( 1  -  A ) ). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
 1  -  A ) ) )
 
Theoremgeoisum1c 11916* The infinite sum of  A  x.  ( R ^ 1 )  +  A  x.  ( R ^ 2 )... is  ( A  x.  R )  /  (
1  -  R ). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^
 k ) )  =  ( ( A  x.  R )  /  (
 1  -  R ) ) )
 
Theorem0.999... 11917 The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
 |- 
 sum_ k  e.  NN  ( 9  /  (; 1 0 ^ k ) )  =  1
 
Theoremgeoihalfsum 11918 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11915. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11917 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
 |- 
 sum_ k  e.  NN  ( 1  /  (
 2 ^ k ) )  =  1
 
4.9.8  Ratio test for infinite series convergence
 
Theoremcvgratnnlembern 11919 Lemma for cvgratnn 11927. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( A ^ M )  < 
 ( ( 1  /  ( ( 1  /  A )  -  1
 ) )  /  M ) )
 
Theoremcvgratnnlemnexp 11920* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  1 ) )  x.  ( A ^
 ( N  -  1
 ) ) ) )
 
Theoremcvgratnnlemmn 11921* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M ) ) ) )
 
Theoremcvgratnnlemseq 11922* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( (  seq 1 (  +  ,  F ) `  N )  -  (  seq 1
 (  +  ,  F ) `  M ) )  =  sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )
 
Theoremcvgratnnlemabsle 11923* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs ` 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )  <_  (
 ( abs `  ( F `  M ) )  x. 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( A ^ (
 i  -  M ) ) ) )
 
Theoremcvgratnnlemsumlt 11924* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^
 ( i  -  M ) )  <  ( A 
 /  ( 1  -  A ) ) )
 
Theoremcvgratnnlemfm 11925* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  M ) )  < 
 ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) ) 
 /  M ) )
 
Theoremcvgratnnlemrate 11926* Lemma for cvgratnn 11927. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )  < 
 ( ( ( ( ( 1  /  (
 ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
 
Theoremcvgratnn 11927* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. Although this theorem is similar to cvgratz 11928 and cvgratgt0 11929, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11746 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremcvgratz 11928* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremcvgratgt0 11929* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms beyond some index  B, then the infinite sum of the terms of 
F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  W ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
4.9.9  Mertens' theorem
 
Theoremmertenslemub 11930* Lemma for mertensabs 11933. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
 |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ph  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( S  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ph  ->  X  e.  T )   &    |-  ( ph  ->  S  e.  NN )   =>    |-  ( ph  ->  X  <_ 
 sum_ n  e.  (
 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) )
 
Theoremmertenslemi1 11931* Lemma for mertensabs 11933. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   &    |-  ( ph  ->  P  e.  RR )   &    |-  ( ph  ->  ( ps  /\  ( t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t )
 ( K `  m )  <  ( ( ( E  /  2 ) 
 /  s )  /  ( P  +  1
 ) ) ) ) )   &    |-  ( ph  ->  0 
 <_  P )   &    |-  ( ph  ->  A. w  e.  T  w  <_  P )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertenslem2 11932* Lemma for mertensabs 11933. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertensabs 11933* Mertens' theorem. If  A ( j ) is an absolutely convergent series and  B ( k ) is convergent, then  ( sum_ j  e.  NN0 A ( j )  x.  sum_ k  e.  NN0 B ( k ) )  =  sum_ k  e. 
NN0 sum_ j  e.  ( 0 ... k ) ( A ( j )  x.  B ( k  -  j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq 0
 (  +  ,  H ) 
 ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B ) )
 
4.9.10  Finite and infinite products
 
4.9.10.1  Product sequences
 
Theoremprodf 11934* An infinite product of complex terms is a function from an upper set of integers to  CC. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
 
Theoremclim2prod 11935* The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq ( N  +  1 ) (  x.  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A ) )
 
Theoremclim2divap 11936* The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  A )   &    |-  ( ph  ->  (  seq M (  x.  ,  F ) `
  N ) #  0 )   =>    |-  ( ph  ->  seq ( N  +  1 )
 (  x.  ,  F ) 
 ~~>  ( A  /  (  seq M (  x.  ,  F ) `  N ) ) )
 
Theoremprod3fmul 11937* The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  x.  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq M (  x.  ,  G ) `
  N ) ) )
 
Theoremprodf1 11938 The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (  seq M (  x.  ,  ( Z  X.  { 1 } ) ) `  N )  =  1 )
 
Theoremprodf1f 11939 A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  x. 
 ,  ( Z  X.  { 1 } ) )  =  ( Z  X.  { 1 } ) )
 
Theoremprodfclim1 11940 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  x. 
 ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremprodfap0 11941* The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `  N ) #  0 )
 
Theoremprodfrecap 11942* The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  =  ( 1 
 /  ( F `  k ) ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   =>    |-  ( ph  ->  (  seq M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq M (  x.  ,  F ) `
  N ) ) )
 
Theoremprodfdivap 11943* The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `
  N )  /  (  seq M (  x. 
 ,  G ) `  N ) ) )
 
4.9.10.2  Non-trivial convergence
 
Theoremntrivcvgap 11944* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
 
Theoremntrivcvgap0 11945* A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  X #  0 )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )
 
4.9.10.3  Complex products
 
Syntaxcprod 11946 Extend class notation to include complex products.
 class  prod_ k  e.  A  B
 
Definitiondf-proddc 11947* Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sumdc 11750 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
 |- 
 prod_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( ( A 
 C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m ) ) ) )
 
Theoremprodeq1f 11948 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ k A   &    |-  F/_ k B   =>    |-  ( A  =  B  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq1 11949* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  ( A  =  B  -> 
 prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremnfcprod1 11950* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k A   =>    |-  F/_ k prod_ k  e.  A  B
 
Theoremnfcprod 11951* Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x prod_ k  e.  A  B
 
Theoremprodeq2w 11952* Equality theorem for product, when the class expressions  B and  C are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2 11953* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  e.  A  B  =  C  -> 
 prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremcbvprod 11954* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodv 11955* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  prod_
 j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodi 11956* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq1i 11957* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
 
Theoremprodeq2i 11958* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  prod_
 k  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq12i 11959* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  D
 
Theoremprodeq1d 11960* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq2d 11961* Equality deduction for product. Note that unlike prodeq2dv 11962, 
k may occur in  ph. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2dv 11962* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2sdv 11963* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theorem2cprodeq2dv 11964* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  D )
 
Theoremprodeq12dv 11965* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodeq12rdv 11966* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodrbdclem 11967* Lemma for prodrbdc 11970. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
Theoremfproddccvg 11968* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x. 
 ,  F ) `  N ) )
 
Theoremprodrbdclem2 11969* Lemma for prodrbdc 11970. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ( ph  /\  N  e.  ( ZZ>= `  M )
 )  ->  (  seq M (  x.  ,  F ) 
 ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodrbdc 11970* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodmodclem3 11971* Lemma for prodmodc 11974. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
Theoremprodmodclem2a 11972* Lemma for prodmodc 11974. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  (  seq 1
 (  x.  ,  G ) `  N ) )
 
Theoremprodmodclem2 11973* Lemma for prodmodc 11974. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  (
 ( A  C_  ( ZZ>=
 `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) 
 /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
Theoremprodmodc 11974* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
 
Theoremzproddc 11975* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  (  ~~>  ` 
 seq M (  x. 
 ,  F ) ) )
 
Theoremiprodap 11976* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
 
Theoremzprodap0 11977* Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X #  0 )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )   &    |-  ( ph  ->  A 
 C_  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  X )
 
Theoremiprodap0 11978* Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X #  0 )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  X )
 
4.9.10.4  Finite products
 
Theoremfprodseq 11979* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( 
 seq 1 (  x. 
 ,  ( n  e. 
 NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
 
Theoremfprodntrivap 11980* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  (
 k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
 )
 
Theoremprod0 11981 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |- 
 prod_ k  e.  (/)  A  =  1
 
Theoremprod1dc 11982* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
 
Theoremprodfct 11983* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( A. k  e.  A  B  e.  CC  -> 
 prod_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  prod_ k  e.  A  B )
 
Theoremfprodf1o 11984* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
 
Theoremprodssdc 11985* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>=
 `  M ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremfprodssdc 11986* Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  ( B 
 \  A ) ) 
 ->  C  =  1 )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremfprodmul 11987* The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) )
 
Theoremprodsnf 11988* A product of a singleton is the term. A version of prodsn 11989 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremprodsn 11989* A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremfprod1 11990* A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  prod_ k  e.  ( M ... M ) A  =  B )
 
Theoremclimprod1 11991 The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  seq
 M (  x.  ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremfprodsplitdc 11992* Split a finite product into two parts. New proofs should use fprodsplit 11993 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ph  ->  A. j  e.  U DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodsplit 11993* Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodm1 11994* Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  B ) )
 
Theoremfprod1p 11995* Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( B  x.  prod_ k  e.  (
 ( M  +  1 ) ... N ) A ) )
 
Theoremfprodp1 11996* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  B ) )
 
Theoremfprodm1s 11997* Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A ) )
 
Theoremfprodp1s 11998* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  [_ ( N  +  1 )  /  k ]_ A ) )
 
Theoremprodsns 11999* A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017.)
 |-  ( ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfprodunsn 12000* Multiply in an additional term in a finite product. See also fprodsplitsn 12029 which is the same but with a  F/ k
ph hypothesis in place of the distinct variable condition between  ph and  k. (Contributed by Jim Kingdon, 16-Aug-2024.)
 |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16195
  Copyright terms: Public domain < Previous  Next >