HomeHome Intuitionistic Logic Explorer
Theorem List (p. 120 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11901-12000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrecos4p 11901* Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^ n )  /  ( ! `  n ) ) )   =>    |-  ( A  e.  RR  ->  ( cos `  A )  =  ( (
 1  -  ( ( A ^ 2 ) 
 /  2 ) )  +  ( Re `  sum_
 k  e.  ( ZZ>= `  4 ) ( F `
  k ) ) ) )
 
Theoremresincl 11902 The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  RR  ->  ( sin `  A )  e.  RR )
 
Theoremrecoscl 11903 The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  RR  ->  ( cos `  A )  e.  RR )
 
Theoremretanclap 11904 The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.)
 |-  ( ( A  e.  RR  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  e. 
 RR )
 
Theoremresincld 11905 Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( sin `  A )  e. 
 RR )
 
Theoremrecoscld 11906 Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( cos `  A )  e. 
 RR )
 
Theoremretanclapd 11907 Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  ( cos `  A ) #  0 )   =>    |-  ( ph  ->  ( tan `  A )  e. 
 RR )
 
Theoremsinneg 11908 The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  CC  ->  ( sin `  -u A )  =  -u ( sin `  A ) )
 
Theoremcosneg 11909 The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A ) )
 
Theoremtannegap 11910 The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  -u A )  =  -u ( tan `  A ) )
 
Theoremsin0 11911 Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.)
 |-  ( sin `  0
 )  =  0
 
Theoremcos0 11912 Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.)
 |-  ( cos `  0
 )  =  1
 
Theoremtan0 11913 The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.)
 |-  ( tan `  0
 )  =  0
 
Theoremefival 11914 The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )
 
Theoremefmival 11915 The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.)
 |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  =  ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) ) )
 
Theoremefeul 11916 Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.)
 |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( exp `  ( Re `  A ) )  x.  ( ( cos `  ( Im `  A ) )  +  ( _i  x.  ( sin `  ( Im `  A ) ) ) ) ) )
 
Theoremefieq 11917 The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( exp `  ( _i  x.  A ) )  =  ( exp `  ( _i  x.  B ) )  <->  ( ( cos `  A )  =  ( cos `  B )  /\  ( sin `  A )  =  ( sin `  B ) ) ) )
 
Theoremsinadd 11918 Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
 )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  (
 ( cos `  A )  x.  ( sin `  B ) ) ) )
 
Theoremcosadd 11919 Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
 )  =  ( ( ( cos `  A )  x.  ( cos `  B ) )  -  (
 ( sin `  A )  x.  ( sin `  B ) ) ) )
 
Theoremtanaddaplem 11920 A useful intermediate step in tanaddap 11921 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( cos `  A ) #  0  /\  ( cos `  B ) #  0 ) )  ->  ( ( cos `  ( A  +  B )
 ) #  0  <->  ( ( tan `  A )  x.  ( tan `  B ) ) #  1 ) )
 
Theoremtanaddap 11921 Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( cos `  A ) #  0  /\  ( cos `  B ) #  0  /\  ( cos `  ( A  +  B ) ) #  0 )
 )  ->  ( tan `  ( A  +  B ) )  =  (
 ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  (
 ( tan `  A )  x.  ( tan `  B ) ) ) ) )
 
Theoremsinsub 11922 Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  -  B ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  -  (
 ( cos `  A )  x.  ( sin `  B ) ) ) )
 
Theoremcossub 11923 Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  -  B ) )  =  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  (
 ( sin `  A )  x.  ( sin `  B ) ) ) )
 
Theoremaddsin 11924 Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A )  +  ( sin `  B ) )  =  ( 2  x.  ( ( sin `  (
 ( A  +  B )  /  2 ) )  x.  ( cos `  (
 ( A  -  B )  /  2 ) ) ) ) )
 
Theoremsubsin 11925 Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A )  -  ( sin `  B ) )  =  ( 2  x.  ( ( cos `  (
 ( A  +  B )  /  2 ) )  x.  ( sin `  (
 ( A  -  B )  /  2 ) ) ) ) )
 
Theoremsinmul 11926 Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 11919 and cossub 11923. (Contributed by David A. Wheeler, 26-May-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A )  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B ) ) ) 
 /  2 ) )
 
Theoremcosmul 11927 Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11919 and cossub 11923. (Contributed by David A. Wheeler, 26-May-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A )  x.  ( cos `  B ) )  =  ( ( ( cos `  ( A  -  B ) )  +  ( cos `  ( A  +  B ) ) ) 
 /  2 ) )
 
Theoremaddcos 11928 Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A )  +  ( cos `  B ) )  =  ( 2  x.  ( ( cos `  (
 ( A  +  B )  /  2 ) )  x.  ( cos `  (
 ( A  -  B )  /  2 ) ) ) ) )
 
Theoremsubcos 11929 Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  B )  -  ( cos `  A ) )  =  ( 2  x.  ( ( sin `  (
 ( A  +  B )  /  2 ) )  x.  ( sin `  (
 ( A  -  B )  /  2 ) ) ) ) )
 
Theoremsincossq 11930 Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
 |-  ( A  e.  CC  ->  ( ( ( sin `  A ) ^ 2
 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
 
Theoremsin2t 11931 Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 2  x.  A ) )  =  ( 2  x.  ( ( sin `  A )  x.  ( cos `  A ) ) ) )
 
Theoremcos2t 11932 Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
 
Theoremcos2tsin 11933 Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 2  x.  A ) )  =  ( 1  -  ( 2  x.  ( ( sin `  A ) ^ 2 ) ) ) )
 
Theoremsinbnd 11934 The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
 |-  ( A  e.  RR  ->  ( -u 1  <_  ( sin `  A )  /\  ( sin `  A )  <_  1 ) )
 
Theoremcosbnd 11935 The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
 |-  ( A  e.  RR  ->  ( -u 1  <_  ( cos `  A )  /\  ( cos `  A )  <_  1 ) )
 
Theoremsinbnd2 11936 The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.)
 |-  ( A  e.  RR  ->  ( sin `  A )  e.  ( -u 1 [,] 1 ) )
 
Theoremcosbnd2 11937 The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.)
 |-  ( A  e.  RR  ->  ( cos `  A )  e.  ( -u 1 [,] 1 ) )
 
Theoremef01bndlem 11938* Lemma for sin01bnd 11939 and cos01bnd 11940. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^ n )  /  ( ! `  n ) ) )   =>    |-  ( A  e.  (
 0 (,] 1 )  ->  ( abs `  sum_ k  e.  ( ZZ>= `  4 )
 ( F `  k
 ) )  <  (
 ( A ^ 4
 )  /  6 )
 )
 
Theoremsin01bnd 11939 Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  (
 0 (,] 1 )  ->  ( ( A  -  ( ( A ^
 3 )  /  3
 ) )  <  ( sin `  A )  /\  ( sin `  A )  <  A ) )
 
Theoremcos01bnd 11940 Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  (
 0 (,] 1 )  ->  ( ( 1  -  ( 2  x.  (
 ( A ^ 2
 )  /  3 )
 ) )  <  ( cos `  A )  /\  ( cos `  A )  <  ( 1  -  (
 ( A ^ 2
 )  /  3 )
 ) ) )
 
Theoremcos1bnd 11941 Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( ( 1  / 
 3 )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 2  /  3
 ) )
 
Theoremcos2bnd 11942 Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( -u ( 7  / 
 9 )  <  ( cos `  2 )  /\  ( cos `  2 )  < 
 -u ( 1  / 
 9 ) )
 
Theoremsinltxirr 11943* The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  ( ( A  e.  RR+  /\  A. q  e.  QQ  A #  q )  ->  ( sin `  A )  <  A )
 
Theoremsin01gt0 11944 The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
 |-  ( A  e.  (
 0 (,] 1 )  -> 
 0  <  ( sin `  A ) )
 
Theoremcos01gt0 11945 The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( A  e.  (
 0 (,] 1 )  -> 
 0  <  ( cos `  A ) )
 
Theoremsin02gt0 11946 The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( A  e.  (
 0 (,] 2 )  -> 
 0  <  ( sin `  A ) )
 
Theoremsincos1sgn 11947 The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( 0  <  ( sin `  1 )  /\  0  <  ( cos `  1
 ) )
 
Theoremsincos2sgn 11948 The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( 0  <  ( sin `  2 )  /\  ( cos `  2 )  <  0 )
 
Theoremsin4lt0 11949 The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( sin `  4
 )  <  0
 
Theoremcos12dec 11950 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
 |-  ( ( A  e.  ( 1 [,] 2
 )  /\  B  e.  ( 1 [,] 2
 )  /\  A  <  B )  ->  ( cos `  B )  <  ( cos `  A ) )
 
Theoremabsefi 11951 The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.)
 |-  ( A  e.  RR  ->  ( abs `  ( exp `  ( _i  x.  A ) ) )  =  1 )
 
Theoremabsef 11952 The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
 |-  ( A  e.  CC  ->  ( abs `  ( exp `  A ) )  =  ( exp `  ( Re `  A ) ) )
 
Theoremabsefib 11953 A complex number is real iff the exponential of its product with  _i has absolute value one. (Contributed by NM, 21-Aug-2008.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  ( _i  x.  A ) ) )  =  1 ) )
 
Theoremefieq1re 11954 A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
 |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
 
Theoremdemoivre 11955 De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 11956 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A ) )  +  ( _i  x.  ( sin `  ( N  x.  A ) ) ) ) )
 
TheoremdemoivreALT 11956 Alternate proof of demoivre 11955. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A ) )  +  ( _i  x.  ( sin `  ( N  x.  A ) ) ) ) )
 
4.10.1.1  The circle constant (tau = 2 pi)
 
Syntaxctau 11957 Extend class notation to include the constant tau,  tau = 6.28318....
 class  tau
 
Definitiondf-tau 11958 Define the circle constant tau, 
tau = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including  tau, a three-legged variant of  pi, or  2 pi. Note the difference between this constant  tau and the formula variable  ta. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.)
 |- 
 tau  = inf ( ( RR+ 
 i^i  ( `' cos " { 1 } )
 ) ,  RR ,  <  )
 
4.10.2  _e is irrational
 
Theoremeirraplem 11959* Lemma for eirrap 11960. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( 1 
 /  ( ! `  n ) ) )   &    |-  ( ph  ->  P  e.  ZZ )   &    |-  ( ph  ->  Q  e.  NN )   =>    |-  ( ph  ->  _e #  ( P  /  Q ) )
 
Theoremeirrap 11960  _e is irrational. That is, for any rational number,  _e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that  _e is not rational, which is eirr 11961. (Contributed by Jim Kingdon, 6-Jan-2023.)
 |-  ( Q  e.  QQ  ->  _e #  Q )
 
Theoremeirr 11961  _e is not rational. In the absence of excluded middle, we can distinguish between this and saying that  _e is irrational in the sense of being apart from any rational number, which is eirrap 11960. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.)
 |-  _e  e/  QQ
 
Theoremegt2lt3 11962 Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.)
 |-  ( 2  <  _e  /\  _e  <  3 )
 
Theoremepos 11963 Euler's constant  _e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.)
 |-  0  <  _e
 
Theoremepr 11964 Euler's constant  _e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.)
 |-  _e  e.  RR+
 
Theoremene0 11965  _e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.)
 |-  _e  =/=  0
 
Theoremeap0 11966  _e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.)
 |-  _e #  0
 
Theoremene1 11967  _e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.)
 |-  _e  =/=  1
 
Theoremeap1 11968  _e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.)
 |-  _e #  1
 
PART 5  ELEMENTARY NUMBER THEORY

This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory.

 
5.1  Elementary properties of divisibility
 
5.1.1  The divides relation
 
Syntaxcdvds 11969 Extend the definition of a class to include the divides relation. See df-dvds 11970.
 class  ||
 
Definitiondf-dvds 11970* Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
 
Theoremdivides 11971* Define the divides relation.  M  ||  N means  M divides into  N with no remainder. For example,  3  ||  6 (ex-dvds 15460). As proven in dvdsval3 11973, 
M  ||  N  <->  ( N  mod  M )  =  0. See divides 11971 and dvdsval2 11972 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <-> 
 E. n  e.  ZZ  ( n  x.  M )  =  N )
 )
 
Theoremdvdsval2 11972 One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
 |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremdvdsval3 11973 One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( N  mod  M )  =  0 )
 )
 
Theoremdvdszrcl 11974 Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |-  ( X  ||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ )
 )
 
Theoremdvdsmod0 11975 If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.)
 |-  ( ( M  e.  NN  /\  M  ||  N )  ->  ( N  mod  M )  =  0 )
 
Theoremp1modz1 11976 If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
 |-  ( ( M  ||  A  /\  1  <  M )  ->  ( ( A  +  1 )  mod  M )  =  1 )
 
Theoremdvdsmodexp 11977 If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12427). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.)
 |-  ( ( N  e.  NN  /\  B  e.  NN  /\  N  ||  A )  ->  ( ( A ^ B )  mod  N )  =  ( A  mod  N ) )
 
Theoremnndivdvds 11978 Strong form of dvdsval2 11972 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A 
 <->  ( A  /  B )  e.  NN )
 )
 
Theoremnndivides 11979* Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N 
 <-> 
 E. n  e.  NN  ( n  x.  M )  =  N )
 )
 
Theoremdvdsdc 11980 Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  -> DECID  M  ||  N )
 
Theoremmoddvds 11981 Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  N )  =  ( B 
 mod  N )  <->  N  ||  ( A  -  B ) ) )
 
Theoremmodm1div 11982 An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
 |-  ( ( N  e.  ( ZZ>= `  2 )  /\  A  e.  ZZ )  ->  ( ( A  mod  N )  =  1  <->  N  ||  ( A  -  1 ) ) )
 
Theoremdvds0lem 11983 A lemma to assist theorems of 
|| with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M )  =  N )  ->  M  ||  N )
 
Theoremdvds1lem 11984* A lemma to assist theorems of 
|| with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )   &    |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )   &    |-  ( ( ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )   &    |-  (
 ( ph  /\  x  e. 
 ZZ )  ->  (
 ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )   =>    |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
 
Theoremdvds2lem 11985* A lemma to assist theorems of 
|| with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )   &    |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )   &    |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ )
 )   &    |-  ( ( ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )   &    |-  (
 ( ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )   =>    |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L )  ->  M  ||  N )
 )
 
Theoremiddvds 11986 An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  N  ||  N )
 
Theorem1dvds 11987 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  1  ||  N )
 
Theoremdvds0 11988 Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  N  ||  0 )
 
Theoremnegdvdsb 11989 An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  -u M  ||  N ) )
 
Theoremdvdsnegb 11990 An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  -u N ) )
 
Theoremabsdvdsb 11991 An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( abs `  M )  ||  N ) )
 
Theoremdvdsabsb 11992 An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( abs `  N ) ) )
 
Theorem0dvds 11993 Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( 0  ||  N  <->  N  =  0 ) )
 
Theoremzdvdsdc 11994 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  ||  N )
 
Theoremdvdsmul1 11995 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
 
Theoremdvdsmul2 11996 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
 
Theoremiddvdsexp 11997 An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  ||  ( M ^ N ) )
 
Theoremmuldvds1 11998 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  ||  N  ->  K 
 ||  N ) )
 
Theoremmuldvds2 11999 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  ||  N  ->  M 
 ||  N ) )
 
Theoremdvdscmul 12000 Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >