Theorem List for Intuitionistic Logic Explorer - 11901-12000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | fprodrev 11901* |
Reversal of a finite product. (Contributed by Scott Fenton,
5-Jan-2018.)
|
            
   
       
      
     |
| |
| Theorem | fprodconst 11902* |
The product of constant terms ( is not free in ).
(Contributed by Scott Fenton, 12-Jan-2018.)
|
   
   ♯     |
| |
| Theorem | fprodap0 11903* |
A finite product of nonzero terms is nonzero. (Contributed by Scott
Fenton, 15-Jan-2018.)
|
       
 #    #   |
| |
| Theorem | fprod2dlemstep 11904* |
Lemma for fprod2d 11905- induction step. (Contributed by Scott
Fenton,
30-Jan-2018.)
|
        
    
 
   
        
 
               

            |
| |
| Theorem | fprod2d 11905* |
Write a double product as a product over a two-dimensional region.
Compare fsum2d 11717. (Contributed by Scott Fenton,
30-Jan-2018.)
|
        
    
 
   

       |
| |
| Theorem | fprodxp 11906* |
Combine two products into a single product over the cartesian product.
(Contributed by Scott Fenton, 1-Feb-2018.)
|
           
 
   
      |
| |
| Theorem | fprodcnv 11907* |
Transform a product region using the converse operation. (Contributed
by Scott Fenton, 1-Feb-2018.)
|
        
               |
| |
| Theorem | fprodcom2fi 11908* |
Interchange order of multiplication. Note that    and
   are not necessarily constant expressions. (Contributed by
Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
|
     
                
 
   
    |
| |
| Theorem | fprodcom 11909* |
Interchange product order. (Contributed by Scott Fenton,
2-Feb-2018.)
|
     
  
        |
| |
| Theorem | fprod0diagfz 11910* |
Two ways to express "the product of     over the
triangular
region , ,
. Compare
fisum0diag 11723. (Contributed by Scott Fenton, 2-Feb-2018.)
|
      
                                          |
| |
| Theorem | fprodrec 11911* |
The finite product of reciprocals is the reciprocal of the product.
(Contributed by Jim Kingdon, 28-Aug-2024.)
|
       
 #     

    |
| |
| Theorem | fproddivap 11912* |
The quotient of two finite products. (Contributed by Scott Fenton,
15-Jan-2018.)
|
       
     #            |
| |
| Theorem | fproddivapf 11913* |
The quotient of two finite products. A version of fproddivap 11912 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
       
 #     
  
   |
| |
| Theorem | fprodsplitf 11914* |
Split a finite product into two parts. A version of fprodsplit 11879 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
                   
    |
| |
| Theorem | fprodsplitsn 11915* |
Separate out a term in a finite product. See also fprodunsn 11886 which is
the same but with a distinct variable condition in place of
  . (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
              
           
   |
| |
| Theorem | fprodsplit1f 11916* |
Separate out a term in a finite product. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
               
              |
| |
| Theorem | fprodclf 11917* |
Closure of a finite product of complex numbers. A version of fprodcl 11889
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
      |
| |
| Theorem | fprodap0f 11918* |
A finite product of terms apart from zero is apart from zero. A version
of fprodap0 11903 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(Revised by Jim Kingdon, 30-Aug-2024.)
|
     
     #    #   |
| |
| Theorem | fprodge0 11919* |
If all the terms of a finite product are nonnegative, so is the product.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
    
 
   |
| |
| Theorem | fprodeq0g 11920* |
Any finite product containing a zero term is itself zero. (Contributed
by Glauco Siliprandi, 5-Apr-2020.)
|
     
     
      |
| |
| Theorem | fprodge1 11921* |
If all of the terms of a finite product are greater than or equal to
, so is the
product. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
     
    
 
   |
| |
| Theorem | fprodle 11922* |
If all the terms of two finite products are nonnegative and compare, so
do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
    
       
      |
| |
| Theorem | fprodmodd 11923* |
If all factors of two finite products are equal modulo , the
products are equal modulo . (Contributed by AV, 7-Jul-2021.)
|
       
     
           
   |
| |
| 4.10 Elementary
trigonometry
|
| |
| 4.10.1 The exponential, sine, and cosine
functions
|
| |
| Syntax | ce 11924 |
Extend class notation to include the exponential function.
|
 |
| |
| Syntax | ceu 11925 |
Extend class notation to include Euler's constant = 2.71828....
|
 |
| |
| Syntax | csin 11926 |
Extend class notation to include the sine function.
|
 |
| |
| Syntax | ccos 11927 |
Extend class notation to include the cosine function.
|
 |
| |
| Syntax | ctan 11928 |
Extend class notation to include the tangent function.
|
 |
| |
| Syntax | cpi 11929 |
Extend class notation to include the constant pi, = 3.14159....
|
 |
| |
| Definition | df-ef 11930* |
Define the exponential function. Its value at the complex number
is     and is called the "exponential of "; see
efval 11943. (Contributed by NM, 14-Mar-2005.)
|
              |
| |
| Definition | df-e 11931 |
Define Euler's constant = 2.71828.... (Contributed by NM,
14-Mar-2005.)
|
     |
| |
| Definition | df-sin 11932 |
Define the sine function. (Contributed by NM, 14-Mar-2005.)
|
                      |
| |
| Definition | df-cos 11933 |
Define the cosine function. (Contributed by NM, 14-Mar-2005.)
|
                    |
| |
| Definition | df-tan 11934 |
Define the tangent function. We define it this way for cmpt 4104,
which
requires the form   .
(Contributed by Mario
Carneiro, 14-Mar-2014.)
|
                      |
| |
| Definition | df-pi 11935 |
Define the constant pi, = 3.14159..., which is the smallest
positive number whose sine is zero. Definition of in [Gleason]
p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV,
14-Sep-2020.)
|
inf             |
| |
| Theorem | eftcl 11936 |
Closure of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 11-Sep-2007.)
|
               |
| |
| Theorem | reeftcl 11937 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
               |
| |
| Theorem | eftabs 11938 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
                                 |
| |
| Theorem | eftvalcn 11939* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|

                 
            |
| |
| Theorem | efcllemp 11940* |
Lemma for efcl 11946. The series that defines the exponential
function
converges. The ratio test cvgratgt0 11815 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|

           
         
 
  
 |
| |
| Theorem | efcllem 11941* |
Lemma for efcl 11946. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|

           
    |
| |
| Theorem | ef0lem 11942* |
The series defining the exponential function converges in the (trivial)
case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|

           
  
  |
| |
| Theorem | efval 11943* |
Value of the exponential function. (Contributed by NM, 8-Jan-2006.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
    
             |
| |
| Theorem | esum 11944 |
Value of Euler's constant = 2.71828.... (Contributed by Steve
Rodriguez, 5-Mar-2006.)
|
        |
| |
| Theorem | eff 11945 |
Domain and codomain of the exponential function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
     |
| |
| Theorem | efcl 11946 |
Closure law for the exponential function. (Contributed by NM,
8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
    
  |
| |
| Theorem | efval2 11947* |
Value of the exponential function. (Contributed by Mario Carneiro,
29-Apr-2014.)
|

           
   
       |
| |
| Theorem | efcvg 11948* |
The series that defines the exponential function converges to it.
(Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro,
28-Apr-2014.)
|

           
  
      |
| |
| Theorem | efcvgfsum 11949* |
Exponential function convergence in terms of a sequence of partial
finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|

                        |
| |
| Theorem | reefcl 11950 |
The exponential function is real if its argument is real. (Contributed
by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
    
  |
| |
| Theorem | reefcld 11951 |
The exponential function is real if its argument is real. (Contributed
by Mario Carneiro, 29-May-2016.)
|
         |
| |
| Theorem | ere 11952 |
Euler's constant =
2.71828... is a real number. (Contributed by
NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
|
 |
| |
| Theorem | ege2le3 11953 |
Euler's constant =
2.71828... is bounded by 2 and 3.
(Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
         
        
  |
| |
| Theorem | ef0 11954 |
Value of the exponential function at 0. Equation 2 of [Gleason] p. 308.
(Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
     |
| |
| Theorem | efcj 11955 |
The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308.
(Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
                   |
| |
| Theorem | efaddlem 11956* |
Lemma for efadd 11957 (exponential function addition law).
(Contributed by
Mario Carneiro, 29-Apr-2014.)
|

          
                                                 |
| |
| Theorem | efadd 11957 |
Sum of exponents law for exponential function. (Contributed by NM,
10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
|
      
              |
| |
| Theorem | efcan 11958 |
Cancellation law for exponential function. Equation 27 of [Rudin] p. 164.
(Contributed by NM, 13-Jan-2006.)
|
           
  |
| |
| Theorem | efap0 11959 |
The exponential of a complex number is apart from zero. (Contributed by
Jim Kingdon, 12-Dec-2022.)
|
     #   |
| |
| Theorem | efne0 11960 |
The exponential of a complex number is nonzero. Corollary 15-4.3 of
[Gleason] p. 309. The same result also
holds with not equal replaced by
apart, as seen at efap0 11959 (which will be more useful in most
contexts).
(Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
       |
| |
| Theorem | efneg 11961 |
The exponential of the opposite is the inverse of the exponential.
(Contributed by Mario Carneiro, 10-May-2014.)
|
     
        |
| |
| Theorem | eff2 11962 |
The exponential function maps the complex numbers to the nonzero complex
numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
|
         |
| |
| Theorem | efsub 11963 |
Difference of exponents law for exponential function. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
                     |
| |
| Theorem | efexp 11964 |
The exponential of an integer power. Corollary 15-4.4 of [Gleason]
p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.)
(Revised by Mario Carneiro, 5-Jun-2014.)
|
                   |
| |
| Theorem | efzval 11965 |
Value of the exponential function for integers. Special case of efval 11943.
Equation 30 of [Rudin] p. 164. (Contributed
by Steve Rodriguez,
15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
|
    
      |
| |
| Theorem | efgt0 11966 |
The exponential of a real number is greater than 0. (Contributed by Paul
Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
       |
| |
| Theorem | rpefcl 11967 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 10-Nov-2013.)
|
    
  |
| |
| Theorem | rpefcld 11968 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 29-May-2016.)
|
         |
| |
| Theorem | eftlcvg 11969* |
The tail series of the exponential function are convergent.
(Contributed by Mario Carneiro, 29-Apr-2014.)
|

                  |
| |
| Theorem | eftlcl 11970* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|

                          |
| |
| Theorem | reeftlcl 11971* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|

                          |
| |
| Theorem | eftlub 11972* |
An upper bound on the absolute value of the infinite tail of the series
expansion of the exponential function on the closed unit disk.
(Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario
Carneiro, 29-Apr-2014.)
|

          
                                                                  
                      |
| |
| Theorem | efsep 11973* |
Separate out the next term of the power series expansion of the
exponential function. The last hypothesis allows the separated terms to
be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|

          
          
                                              |
| |
| Theorem | effsumlt 11974* |
The partial sums of the series expansion of the exponential function at
a positive real number are bounded by the value of the function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
29-Apr-2014.)
|

           
                |
| |
| Theorem | eft0val 11975 |
The value of the first term of the series expansion of the exponential
function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by
Mario Carneiro, 29-Apr-2014.)
|
             |
| |
| Theorem | ef4p 11976* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|

           
   
         
                      |
| |
| Theorem | efgt1p2 11977 |
The exponential of a positive real number is greater than the sum of the
first three terms of the series expansion. (Contributed by Mario
Carneiro, 15-Sep-2014.)
|
        
 
      |
| |
| Theorem | efgt1p 11978 |
The exponential of a positive real number is greater than 1 plus that
number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by
Mario Carneiro, 30-Apr-2014.)
|
         |
| |
| Theorem | efgt1 11979 |
The exponential of a positive real number is greater than 1.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
30-Apr-2014.)
|

      |
| |
| Theorem | efltim 11980 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
20-Dec-2022.)
|
               |
| |
| Theorem | reef11 11981 |
The exponential function on real numbers is one-to-one. (Contributed by
NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
|
               |
| |
| Theorem | reeff1 11982 |
The exponential function maps real arguments one-to-one to positive
reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by
Mario Carneiro, 10-Nov-2013.)
|
       |
| |
| Theorem | eflegeo 11983 |
The exponential function on the reals between 0 and 1 lies below the
comparable geometric series sum. (Contributed by Paul Chapman,
11-Sep-2007.)
|
                 |
| |
| Theorem | sinval 11984 |
Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised
by Mario Carneiro, 10-Nov-2013.)
|
    
                     |
| |
| Theorem | cosval 11985 |
Value of the cosine function. (Contributed by NM, 14-Mar-2005.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
    
                   |
| |
| Theorem | sinf 11986 |
Domain and codomain of the sine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
     |
| |
| Theorem | cosf 11987 |
Domain and codomain of the cosine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
     |
| |
| Theorem | sincl 11988 |
Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised
by Mario Carneiro, 30-Apr-2014.)
|
    
  |
| |
| Theorem | coscl 11989 |
Closure of the cosine function with a complex argument. (Contributed by
NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
    
  |
| |
| Theorem | tanvalap 11990 |
Value of the tangent function. (Contributed by Mario Carneiro,
14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
|
      #                  |
| |
| Theorem | tanclap 11991 |
The closure of the tangent function with a complex argument. (Contributed
by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon,
21-Dec-2022.)
|
      #        |
| |
| Theorem | sincld 11992 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
         |
| |
| Theorem | coscld 11993 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
         |
| |
| Theorem | tanclapd 11994 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
|
       #         |
| |
| Theorem | tanval2ap 11995 |
Express the tangent function directly in terms of . (Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
      #             
                            |
| |
| Theorem | tanval3ap 11996 |
Express the tangent function directly in terms of . (Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
            #                                |
| |
| Theorem | resinval 11997 |
The sine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
    
            |
| |
| Theorem | recosval 11998 |
The cosine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
    
            |
| |
| Theorem | efi4p 11999* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|

                               
    
                 |
| |
| Theorem | resin4p 12000* |
Separate out the first four terms of the infinite series expansion of
the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|

                 
                          |