| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dom1o | Unicode version | ||
| Description: Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.) |
| Ref | Expression |
|---|---|
| dom1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomg 6847 |
. . 3
| |
| 2 | f1f 5490 |
. . . . . 6
| |
| 3 | 0lt1o 6536 |
. . . . . . 7
| |
| 4 | ffvelcdm 5723 |
. . . . . . 7
| |
| 5 | 3, 4 | mpan2 425 |
. . . . . 6
|
| 6 | elex2 2790 |
. . . . . 6
| |
| 7 | 2, 5, 6 | 3syl 17 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 8 | exlimdv 1843 |
. . 3
|
| 10 | 1, 9 | sylbid 150 |
. 2
|
| 11 | 0ex 4176 |
. . . . . . . 8
| |
| 12 | vex 2776 |
. . . . . . . 8
| |
| 13 | 11, 12 | opex 4278 |
. . . . . . 7
|
| 14 | 13 | snex 4234 |
. . . . . 6
|
| 15 | 14 | a1i 9 |
. . . . 5
|
| 16 | f1sng 5574 |
. . . . . . 7
| |
| 17 | 3, 16 | mpan 424 |
. . . . . 6
|
| 18 | df1o2 6525 |
. . . . . . 7
| |
| 19 | f1eq2 5486 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | 17, 20 | sylibr 134 |
. . . . 5
|
| 22 | f1eq1 5485 |
. . . . 5
| |
| 23 | 15, 21, 22 | elabd 2920 |
. . . 4
|
| 24 | 23 | exlimiv 1622 |
. . 3
|
| 25 | 24, 1 | imbitrrid 156 |
. 2
|
| 26 | 10, 25 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-dom 6839 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |