| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dom1o | GIF version | ||
| Description: Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.) |
| Ref | Expression |
|---|---|
| dom1o | ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑗 𝑗 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomg 6847 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑓 𝑓:1o–1-1→𝐴)) | |
| 2 | f1f 5490 | . . . . . 6 ⊢ (𝑓:1o–1-1→𝐴 → 𝑓:1o⟶𝐴) | |
| 3 | 0lt1o 6536 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 4 | ffvelcdm 5723 | . . . . . . 7 ⊢ ((𝑓:1o⟶𝐴 ∧ ∅ ∈ 1o) → (𝑓‘∅) ∈ 𝐴) | |
| 5 | 3, 4 | mpan2 425 | . . . . . 6 ⊢ (𝑓:1o⟶𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 6 | elex2 2790 | . . . . . 6 ⊢ ((𝑓‘∅) ∈ 𝐴 → ∃𝑗 𝑗 ∈ 𝐴) | |
| 7 | 2, 5, 6 | 3syl 17 | . . . . 5 ⊢ (𝑓:1o–1-1→𝐴 → ∃𝑗 𝑗 ∈ 𝐴) |
| 8 | 7 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑓:1o–1-1→𝐴 → ∃𝑗 𝑗 ∈ 𝐴)) |
| 9 | 8 | exlimdv 1843 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:1o–1-1→𝐴 → ∃𝑗 𝑗 ∈ 𝐴)) |
| 10 | 1, 9 | sylbid 150 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 → ∃𝑗 𝑗 ∈ 𝐴)) |
| 11 | 0ex 4176 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 12 | vex 2776 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
| 13 | 11, 12 | opex 4278 | . . . . . . 7 ⊢ 〈∅, 𝑗〉 ∈ V |
| 14 | 13 | snex 4234 | . . . . . 6 ⊢ {〈∅, 𝑗〉} ∈ V |
| 15 | 14 | a1i 9 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → {〈∅, 𝑗〉} ∈ V) |
| 16 | f1sng 5574 | . . . . . . 7 ⊢ ((∅ ∈ 1o ∧ 𝑗 ∈ 𝐴) → {〈∅, 𝑗〉}:{∅}–1-1→𝐴) | |
| 17 | 3, 16 | mpan 424 | . . . . . 6 ⊢ (𝑗 ∈ 𝐴 → {〈∅, 𝑗〉}:{∅}–1-1→𝐴) |
| 18 | df1o2 6525 | . . . . . . 7 ⊢ 1o = {∅} | |
| 19 | f1eq2 5486 | . . . . . . 7 ⊢ (1o = {∅} → ({〈∅, 𝑗〉}:1o–1-1→𝐴 ↔ {〈∅, 𝑗〉}:{∅}–1-1→𝐴)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, 𝑗〉}:1o–1-1→𝐴 ↔ {〈∅, 𝑗〉}:{∅}–1-1→𝐴) |
| 21 | 17, 20 | sylibr 134 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → {〈∅, 𝑗〉}:1o–1-1→𝐴) |
| 22 | f1eq1 5485 | . . . . 5 ⊢ (𝑓 = {〈∅, 𝑗〉} → (𝑓:1o–1-1→𝐴 ↔ {〈∅, 𝑗〉}:1o–1-1→𝐴)) | |
| 23 | 15, 21, 22 | elabd 2920 | . . . 4 ⊢ (𝑗 ∈ 𝐴 → ∃𝑓 𝑓:1o–1-1→𝐴) |
| 24 | 23 | exlimiv 1622 | . . 3 ⊢ (∃𝑗 𝑗 ∈ 𝐴 → ∃𝑓 𝑓:1o–1-1→𝐴) |
| 25 | 24, 1 | imbitrrid 156 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑗 𝑗 ∈ 𝐴 → 1o ≼ 𝐴)) |
| 26 | 10, 25 | impbid 129 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑗 𝑗 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ∅c0 3462 {csn 3635 〈cop 3638 class class class wbr 4048 ⟶wf 5273 –1-1→wf1 5274 ‘cfv 5277 1oc1o 6505 ≼ cdom 6836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-dom 6839 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |