ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom1o GIF version

Theorem dom1o 6985
Description: Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
Assertion
Ref Expression
dom1o (𝐴𝑉 → (1o𝐴 ↔ ∃𝑗 𝑗𝐴))
Distinct variable group:   𝐴,𝑗
Allowed substitution hint:   𝑉(𝑗)

Proof of Theorem dom1o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomg 6905 . . 3 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑓 𝑓:1o1-1𝐴))
2 f1f 5533 . . . . . 6 (𝑓:1o1-1𝐴𝑓:1o𝐴)
3 0lt1o 6594 . . . . . . 7 ∅ ∈ 1o
4 ffvelcdm 5770 . . . . . . 7 ((𝑓:1o𝐴 ∧ ∅ ∈ 1o) → (𝑓‘∅) ∈ 𝐴)
53, 4mpan2 425 . . . . . 6 (𝑓:1o𝐴 → (𝑓‘∅) ∈ 𝐴)
6 elex2 2816 . . . . . 6 ((𝑓‘∅) ∈ 𝐴 → ∃𝑗 𝑗𝐴)
72, 5, 63syl 17 . . . . 5 (𝑓:1o1-1𝐴 → ∃𝑗 𝑗𝐴)
87a1i 9 . . . 4 (𝐴𝑉 → (𝑓:1o1-1𝐴 → ∃𝑗 𝑗𝐴))
98exlimdv 1865 . . 3 (𝐴𝑉 → (∃𝑓 𝑓:1o1-1𝐴 → ∃𝑗 𝑗𝐴))
101, 9sylbid 150 . 2 (𝐴𝑉 → (1o𝐴 → ∃𝑗 𝑗𝐴))
11 0ex 4211 . . . . . . . 8 ∅ ∈ V
12 vex 2802 . . . . . . . 8 𝑗 ∈ V
1311, 12opex 4315 . . . . . . 7 ⟨∅, 𝑗⟩ ∈ V
1413snex 4269 . . . . . 6 {⟨∅, 𝑗⟩} ∈ V
1514a1i 9 . . . . 5 (𝑗𝐴 → {⟨∅, 𝑗⟩} ∈ V)
16 f1sng 5617 . . . . . . 7 ((∅ ∈ 1o𝑗𝐴) → {⟨∅, 𝑗⟩}:{∅}–1-1𝐴)
173, 16mpan 424 . . . . . 6 (𝑗𝐴 → {⟨∅, 𝑗⟩}:{∅}–1-1𝐴)
18 df1o2 6582 . . . . . . 7 1o = {∅}
19 f1eq2 5529 . . . . . . 7 (1o = {∅} → ({⟨∅, 𝑗⟩}:1o1-1𝐴 ↔ {⟨∅, 𝑗⟩}:{∅}–1-1𝐴))
2018, 19ax-mp 5 . . . . . 6 ({⟨∅, 𝑗⟩}:1o1-1𝐴 ↔ {⟨∅, 𝑗⟩}:{∅}–1-1𝐴)
2117, 20sylibr 134 . . . . 5 (𝑗𝐴 → {⟨∅, 𝑗⟩}:1o1-1𝐴)
22 f1eq1 5528 . . . . 5 (𝑓 = {⟨∅, 𝑗⟩} → (𝑓:1o1-1𝐴 ↔ {⟨∅, 𝑗⟩}:1o1-1𝐴))
2315, 21, 22elabd 2948 . . . 4 (𝑗𝐴 → ∃𝑓 𝑓:1o1-1𝐴)
2423exlimiv 1644 . . 3 (∃𝑗 𝑗𝐴 → ∃𝑓 𝑓:1o1-1𝐴)
2524, 1imbitrrid 156 . 2 (𝐴𝑉 → (∃𝑗 𝑗𝐴 → 1o𝐴))
2610, 25impbid 129 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑗 𝑗𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  c0 3491  {csn 3666  cop 3669   class class class wbr 4083  wf 5314  1-1wf1 5315  cfv 5318  1oc1o 6561  cdom 6894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6568  df-dom 6897
This theorem is referenced by:  dom1oi  6986
  Copyright terms: Public domain W3C validator