| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dom1o | GIF version | ||
| Description: Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.) |
| Ref | Expression |
|---|---|
| dom1o | ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑗 𝑗 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomg 6887 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑓 𝑓:1o–1-1→𝐴)) | |
| 2 | f1f 5527 | . . . . . 6 ⊢ (𝑓:1o–1-1→𝐴 → 𝑓:1o⟶𝐴) | |
| 3 | 0lt1o 6576 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 4 | ffvelcdm 5761 | . . . . . . 7 ⊢ ((𝑓:1o⟶𝐴 ∧ ∅ ∈ 1o) → (𝑓‘∅) ∈ 𝐴) | |
| 5 | 3, 4 | mpan2 425 | . . . . . 6 ⊢ (𝑓:1o⟶𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 6 | elex2 2816 | . . . . . 6 ⊢ ((𝑓‘∅) ∈ 𝐴 → ∃𝑗 𝑗 ∈ 𝐴) | |
| 7 | 2, 5, 6 | 3syl 17 | . . . . 5 ⊢ (𝑓:1o–1-1→𝐴 → ∃𝑗 𝑗 ∈ 𝐴) |
| 8 | 7 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑓:1o–1-1→𝐴 → ∃𝑗 𝑗 ∈ 𝐴)) |
| 9 | 8 | exlimdv 1865 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:1o–1-1→𝐴 → ∃𝑗 𝑗 ∈ 𝐴)) |
| 10 | 1, 9 | sylbid 150 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 → ∃𝑗 𝑗 ∈ 𝐴)) |
| 11 | 0ex 4210 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 12 | vex 2802 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
| 13 | 11, 12 | opex 4314 | . . . . . . 7 ⊢ 〈∅, 𝑗〉 ∈ V |
| 14 | 13 | snex 4268 | . . . . . 6 ⊢ {〈∅, 𝑗〉} ∈ V |
| 15 | 14 | a1i 9 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → {〈∅, 𝑗〉} ∈ V) |
| 16 | f1sng 5611 | . . . . . . 7 ⊢ ((∅ ∈ 1o ∧ 𝑗 ∈ 𝐴) → {〈∅, 𝑗〉}:{∅}–1-1→𝐴) | |
| 17 | 3, 16 | mpan 424 | . . . . . 6 ⊢ (𝑗 ∈ 𝐴 → {〈∅, 𝑗〉}:{∅}–1-1→𝐴) |
| 18 | df1o2 6565 | . . . . . . 7 ⊢ 1o = {∅} | |
| 19 | f1eq2 5523 | . . . . . . 7 ⊢ (1o = {∅} → ({〈∅, 𝑗〉}:1o–1-1→𝐴 ↔ {〈∅, 𝑗〉}:{∅}–1-1→𝐴)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, 𝑗〉}:1o–1-1→𝐴 ↔ {〈∅, 𝑗〉}:{∅}–1-1→𝐴) |
| 21 | 17, 20 | sylibr 134 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → {〈∅, 𝑗〉}:1o–1-1→𝐴) |
| 22 | f1eq1 5522 | . . . . 5 ⊢ (𝑓 = {〈∅, 𝑗〉} → (𝑓:1o–1-1→𝐴 ↔ {〈∅, 𝑗〉}:1o–1-1→𝐴)) | |
| 23 | 15, 21, 22 | elabd 2948 | . . . 4 ⊢ (𝑗 ∈ 𝐴 → ∃𝑓 𝑓:1o–1-1→𝐴) |
| 24 | 23 | exlimiv 1644 | . . 3 ⊢ (∃𝑗 𝑗 ∈ 𝐴 → ∃𝑓 𝑓:1o–1-1→𝐴) |
| 25 | 24, 1 | imbitrrid 156 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑗 𝑗 ∈ 𝐴 → 1o ≼ 𝐴)) |
| 26 | 10, 25 | impbid 129 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ≼ 𝐴 ↔ ∃𝑗 𝑗 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 {csn 3666 〈cop 3669 class class class wbr 4082 ⟶wf 5310 –1-1→wf1 5311 ‘cfv 5314 1oc1o 6545 ≼ cdom 6876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1o 6552 df-dom 6879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |