ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanvalap Unicode version

Theorem tanvalap 11719
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
Assertion
Ref Expression
tanvalap  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )

Proof of Theorem tanvalap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  A  e.  CC )
2 coscl 11718 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
32adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A )  e.  CC )
4 simpr 110 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A ) #  0 )
5 0cnd 7953 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  0  e.  CC )
6 apne 8583 . . . . . 6  |-  ( ( ( cos `  A
)  e.  CC  /\  0  e.  CC )  ->  ( ( cos `  A
) #  0  ->  ( cos `  A )  =/=  0 ) )
73, 5, 6syl2anc 411 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( cos `  A
) #  0  ->  ( cos `  A )  =/=  0 ) )
84, 7mpd 13 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A )  =/=  0 )
9 eldifsn 3721 . . . 4  |-  ( ( cos `  A )  e.  ( CC  \  { 0 } )  <-> 
( ( cos `  A
)  e.  CC  /\  ( cos `  A )  =/=  0 ) )
103, 8, 9sylanbrc 417 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A )  e.  ( CC  \  {
0 } ) )
11 cosf 11716 . . . 4  |-  cos : CC
--> CC
12 ffn 5367 . . . 4  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
13 elpreima 5638 . . . 4  |-  ( cos 
Fn  CC  ->  ( A  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( A  e.  CC  /\  ( cos `  A
)  e.  ( CC 
\  { 0 } ) ) ) )
1411, 12, 13mp2b 8 . . 3  |-  ( A  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( A  e.  CC  /\  ( cos `  A
)  e.  ( CC 
\  { 0 } ) ) )
151, 10, 14sylanbrc 417 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  A  e.  ( `' cos " ( CC  \  { 0 } ) ) )
16 sincl 11717 . . . 4  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1716adantr 276 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  e.  CC )
1817, 3, 4divclapd 8750 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( sin `  A
)  /  ( cos `  A ) )  e.  CC )
19 fveq2 5517 . . . 4  |-  ( x  =  A  ->  ( sin `  x )  =  ( sin `  A
) )
20 fveq2 5517 . . . 4  |-  ( x  =  A  ->  ( cos `  x )  =  ( cos `  A
) )
2119, 20oveq12d 5896 . . 3  |-  ( x  =  A  ->  (
( sin `  x
)  /  ( cos `  x ) )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
22 df-tan 11663 . . 3  |-  tan  =  ( x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x
) ) )
2321, 22fvmptg 5595 . 2  |-  ( ( A  e.  ( `' cos " ( CC 
\  { 0 } ) )  /\  (
( sin `  A
)  /  ( cos `  A ) )  e.  CC )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2415, 18, 23syl2anc 411 1  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347    \ cdif 3128   {csn 3594   class class class wbr 4005   `'ccnv 4627   "cima 4631    Fn wfn 5213   -->wf 5214   ` cfv 5218  (class class class)co 5878   CCcc 7812   0cc0 7814   # cap 8541    / cdiv 8632   sincsin 11655   cosccos 11656   tanctan 11657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365  df-ef 11659  df-sin 11661  df-cos 11662  df-tan 11663
This theorem is referenced by:  tanclap  11720  tanval2ap  11724  retanclap  11733  tannegap  11739  tan0  11742  tanaddaplem  11749  tanaddap  11750  tanrpcl  14398  tangtx  14399  tan4thpi  14402
  Copyright terms: Public domain W3C validator