ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmap GIF version

Theorem elmap 6771
Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
elmap (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴)

Proof of Theorem elmap
StepHypRef Expression
1 elmap.1 . 2 𝐴 ∈ V
2 elmap.2 . 2 𝐵 ∈ V
3 elmapg 6755 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴))
41, 2, 3mp2an 426 1 (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  Vcvv 2773  wf 5272  (class class class)co 5951  𝑚 cmap 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-map 6744
This theorem is referenced by:  mapval2  6772  fvmptmap  6779  mapsn  6784  mapsnconst  6788  mapsncnv  6789  xpmapenlem  6953  infnninfOLD  7234  nnnninf  7235  nninfdcinf  7280  nninfwlporlem  7282  nninfwlpoimlemg  7284  1arith  12734  dfrhm2  13960  plyrecj  15279  subctctexmid  16011  0nninf  16015  nninffeq  16031
  Copyright terms: Public domain W3C validator