ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmap GIF version

Theorem elmap 6832
Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
elmap (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴)

Proof of Theorem elmap
StepHypRef Expression
1 elmap.1 . 2 𝐴 ∈ V
2 elmap.2 . 2 𝐵 ∈ V
3 elmapg 6816 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴))
41, 2, 3mp2an 426 1 (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  wf 5314  (class class class)co 6007  𝑚 cmap 6803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-map 6805
This theorem is referenced by:  mapval2  6833  fvmptmap  6840  mapsn  6845  mapsnconst  6849  mapsncnv  6850  xpmapenlem  7018  infnninfOLD  7300  nnnninf  7301  nninfdcinf  7346  nninfwlporlem  7348  nninfwlpoimlemg  7350  1arith  12898  dfrhm2  14126  plyrecj  15445  subctctexmid  16395  0nninf  16400  nninffeq  16416
  Copyright terms: Public domain W3C validator