![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltpsi | GIF version |
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
eltpsi.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} |
eltpsi.u | ⊢ 𝐴 = ∪ 𝐽 |
eltpsi.j | ⊢ 𝐽 ∈ Top |
Ref | Expression |
---|---|
eltpsi | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpsi.j | . . 3 ⊢ 𝐽 ∈ Top | |
2 | eltpsi.u | . . . 4 ⊢ 𝐴 = ∪ 𝐽 | |
3 | 2 | toptopon 14197 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐴)) |
4 | 1, 3 | mpbi 145 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐴) |
5 | eltpsi.k | . . 3 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} | |
6 | 5 | eltpsg 14219 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
7 | 4, 6 | ax-mp 5 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 {cpr 3620 〈cop 3622 ∪ cuni 3836 ‘cfv 5255 ndxcnx 12618 Basecbs 12621 TopSetcts 12704 Topctop 14176 TopOnctopon 14189 TopSpctps 14209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-ndx 12624 df-slot 12625 df-base 12627 df-tset 12717 df-rest 12855 df-topn 12856 df-top 14177 df-topon 14190 df-topsp 14210 |
This theorem is referenced by: distps 14270 retps 14706 |
Copyright terms: Public domain | W3C validator |