ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 Unicode version

Theorem mulp1mod1 10582
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9729 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
21adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  CC )
3 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
43zcnd 9566 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  CC )
52, 4mulcomd 8164 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  =  ( A  x.  N ) )
65oveq1d 6015 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  ( ( A  x.  N )  mod  N ) )
7 eluzelz 9727 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
8 zq 9817 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  QQ )
97, 8syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  QQ )
109adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  QQ )
11 0red 8143 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  RR )
12 2re 9176 . . . . . . . . 9  |-  2  e.  RR
1312a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  RR )
147adantl 277 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  ZZ )
1514zred 9565 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  RR )
16 2pos 9197 . . . . . . . . 9  |-  0  <  2
1716a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  2 )
18 eluzle 9730 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1918adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  <_  N )
2011, 13, 15, 17, 19ltletrd 8566 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  N )
21 mulqmod0 10547 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  x.  N
)  mod  N )  =  0 )
223, 10, 20, 21syl3anc 1271 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  x.  N )  mod  N
)  =  0 )
236, 22eqtrd 2262 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  0 )
2423oveq1d 6015 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  ( 0  +  1 ) )
25 0p1e1 9220 . . . 4  |-  ( 0  +  1 )  =  1
2624, 25eqtrdi 2278 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  1 )
2726oveq1d 6015 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( 1  mod  N ) )
28 zq 9817 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
293, 28syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  QQ )
30 qmulcl 9828 . . . 4  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
3110, 29, 30syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  e.  QQ )
32 1z 9468 . . . 4  |-  1  e.  ZZ
33 zq 9817 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3432, 33mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  QQ )
35 modqaddmod 10580 . . 3  |-  ( ( ( ( N  x.  A )  e.  QQ  /\  1  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
3631, 34, 10, 20, 35syl22anc 1272 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
37 eluz2gt1 9793 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
3837adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  N )
39 q1mod 10573 . . 3  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4010, 38, 39syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  mod  N
)  =  1 )
4127, 36, 403eqtr3d 2270 1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    <_ cle 8178   2c2 9157   ZZcz 9442   ZZ>=cuz 9718   QQcq 9810    mod cmo 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fl 10485  df-mod 10540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator