ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 Unicode version

Theorem mulp1mod1 10476
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9631 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
21adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  CC )
3 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
43zcnd 9468 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  CC )
52, 4mulcomd 8067 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  =  ( A  x.  N ) )
65oveq1d 5940 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  ( ( A  x.  N )  mod  N ) )
7 eluzelz 9629 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
8 zq 9719 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  QQ )
97, 8syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  QQ )
109adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  QQ )
11 0red 8046 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  RR )
12 2re 9079 . . . . . . . . 9  |-  2  e.  RR
1312a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  RR )
147adantl 277 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  ZZ )
1514zred 9467 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  RR )
16 2pos 9100 . . . . . . . . 9  |-  0  <  2
1716a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  2 )
18 eluzle 9632 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1918adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  <_  N )
2011, 13, 15, 17, 19ltletrd 8469 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  N )
21 mulqmod0 10441 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  x.  N
)  mod  N )  =  0 )
223, 10, 20, 21syl3anc 1249 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  x.  N )  mod  N
)  =  0 )
236, 22eqtrd 2229 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  0 )
2423oveq1d 5940 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  ( 0  +  1 ) )
25 0p1e1 9123 . . . 4  |-  ( 0  +  1 )  =  1
2624, 25eqtrdi 2245 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  1 )
2726oveq1d 5940 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( 1  mod  N ) )
28 zq 9719 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
293, 28syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  QQ )
30 qmulcl 9730 . . . 4  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
3110, 29, 30syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  e.  QQ )
32 1z 9371 . . . 4  |-  1  e.  ZZ
33 zq 9719 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3432, 33mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  QQ )
35 modqaddmod 10474 . . 3  |-  ( ( ( ( N  x.  A )  e.  QQ  /\  1  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
3631, 34, 10, 20, 35syl22anc 1250 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
37 eluz2gt1 9695 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
3837adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  N )
39 q1mod 10467 . . 3  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4010, 38, 39syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  mod  N
)  =  1 )
4127, 36, 403eqtr3d 2237 1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    <_ cle 8081   2c2 9060   ZZcz 9345   ZZ>=cuz 9620   QQcq 9712    mod cmo 10433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fl 10379  df-mod 10434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator