ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 Unicode version

Theorem mulp1mod1 10439
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9606 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
21adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  CC )
3 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
43zcnd 9443 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  CC )
52, 4mulcomd 8043 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  =  ( A  x.  N ) )
65oveq1d 5934 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  ( ( A  x.  N )  mod  N ) )
7 eluzelz 9604 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
8 zq 9694 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  QQ )
97, 8syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  QQ )
109adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  QQ )
11 0red 8022 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  RR )
12 2re 9054 . . . . . . . . 9  |-  2  e.  RR
1312a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  RR )
147adantl 277 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  ZZ )
1514zred 9442 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  RR )
16 2pos 9075 . . . . . . . . 9  |-  0  <  2
1716a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  2 )
18 eluzle 9607 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1918adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  <_  N )
2011, 13, 15, 17, 19ltletrd 8444 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  N )
21 mulqmod0 10404 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  x.  N
)  mod  N )  =  0 )
223, 10, 20, 21syl3anc 1249 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  x.  N )  mod  N
)  =  0 )
236, 22eqtrd 2226 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  0 )
2423oveq1d 5934 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  ( 0  +  1 ) )
25 0p1e1 9098 . . . 4  |-  ( 0  +  1 )  =  1
2624, 25eqtrdi 2242 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  1 )
2726oveq1d 5934 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( 1  mod  N ) )
28 zq 9694 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
293, 28syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  QQ )
30 qmulcl 9705 . . . 4  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
3110, 29, 30syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  e.  QQ )
32 1z 9346 . . . 4  |-  1  e.  ZZ
33 zq 9694 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3432, 33mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  QQ )
35 modqaddmod 10437 . . 3  |-  ( ( ( ( N  x.  A )  e.  QQ  /\  1  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
3631, 34, 10, 20, 35syl22anc 1250 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
37 eluz2gt1 9670 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
3837adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  N )
39 q1mod 10430 . . 3  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4010, 38, 39syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  mod  N
)  =  1 )
4127, 36, 403eqtr3d 2234 1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057   2c2 9035   ZZcz 9320   ZZ>=cuz 9595   QQcq 9687    mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator