ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 Unicode version

Theorem mulp1mod1 10457
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9612 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
21adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  CC )
3 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
43zcnd 9449 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  CC )
52, 4mulcomd 8048 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  =  ( A  x.  N ) )
65oveq1d 5937 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  ( ( A  x.  N )  mod  N ) )
7 eluzelz 9610 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
8 zq 9700 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  QQ )
97, 8syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  QQ )
109adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  QQ )
11 0red 8027 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  RR )
12 2re 9060 . . . . . . . . 9  |-  2  e.  RR
1312a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  RR )
147adantl 277 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  ZZ )
1514zred 9448 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  RR )
16 2pos 9081 . . . . . . . . 9  |-  0  <  2
1716a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  2 )
18 eluzle 9613 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1918adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  <_  N )
2011, 13, 15, 17, 19ltletrd 8450 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  N )
21 mulqmod0 10422 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  x.  N
)  mod  N )  =  0 )
223, 10, 20, 21syl3anc 1249 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  x.  N )  mod  N
)  =  0 )
236, 22eqtrd 2229 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  0 )
2423oveq1d 5937 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  ( 0  +  1 ) )
25 0p1e1 9104 . . . 4  |-  ( 0  +  1 )  =  1
2624, 25eqtrdi 2245 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  1 )
2726oveq1d 5937 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( 1  mod  N ) )
28 zq 9700 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
293, 28syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  QQ )
30 qmulcl 9711 . . . 4  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
3110, 29, 30syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  e.  QQ )
32 1z 9352 . . . 4  |-  1  e.  ZZ
33 zq 9700 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3432, 33mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  QQ )
35 modqaddmod 10455 . . 3  |-  ( ( ( ( N  x.  A )  e.  QQ  /\  1  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
3631, 34, 10, 20, 35syl22anc 1250 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
37 eluz2gt1 9676 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
3837adantl 277 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  N )
39 q1mod 10448 . . 3  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4010, 38, 39syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  mod  N
)  =  1 )
4127, 36, 403eqtr3d 2237 1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062   2c2 9041   ZZcz 9326   ZZ>=cuz 9601   QQcq 9693    mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator