ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn GIF version

Theorem eluzelcn 9570
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9569 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
21recnd 8017 1 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  cfv 5235  cc 7840  cuz 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-cnex 7933  ax-resscn 7934
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-neg 8162  df-z 9285  df-uz 9560
This theorem is referenced by:  uzp1  9593  peano2uzr  9617  uzaddcl  9618  eluzgtdifelfzo  10229  rebtwn2zlemstep  10285  mulp1mod1  10398  seq3m1  10501  facnn  10742  fac0  10743  fac1  10744  facp1  10745  bcval5  10778  bcn2  10779  shftuz  10861  seq3shft  10882  climshftlemg  11345  climshft  11347  isumshft  11533  dvdsexp  11902  pclem0  12321
  Copyright terms: Public domain W3C validator