ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn GIF version

Theorem eluzelcn 9659
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9658 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
21recnd 8101 1 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  cfv 5271  cc 7923  cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-neg 8246  df-z 9373  df-uz 9649
This theorem is referenced by:  uzp1  9682  peano2uzr  9706  uzaddcl  9707  eluzgtdifelfzo  10326  rebtwn2zlemstep  10395  fldiv4lem1div2uz2  10449  mulp1mod1  10510  seq3m1  10618  facnn  10872  fac0  10873  fac1  10874  facp1  10875  bcval5  10908  bcn2  10909  swrdfv2  11116  shftuz  11128  seq3shft  11149  climshftlemg  11613  climshft  11615  isumshft  11801  dvdsexp  12172  pclem0  12609  gsumfzconst  13677
  Copyright terms: Public domain W3C validator