ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn GIF version

Theorem eluzelcn 9510
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9509 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
21recnd 7960 1 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2146  cfv 5208  cc 7784  cuz 9499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-neg 8105  df-z 9225  df-uz 9500
This theorem is referenced by:  uzp1  9532  peano2uzr  9556  uzaddcl  9557  eluzgtdifelfzo  10165  rebtwn2zlemstep  10221  mulp1mod1  10333  seq3m1  10436  facnn  10673  fac0  10674  fac1  10675  facp1  10676  bcval5  10709  bcn2  10710  shftuz  10792  seq3shft  10813  climshftlemg  11276  climshft  11278  isumshft  11464  dvdsexp  11832  pclem0  12251
  Copyright terms: Public domain W3C validator