ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgabl Unicode version

Theorem eqgabl 13400
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x  |-  X  =  ( Base `  G
)
eqgabl.n  |-  .-  =  ( -g `  G )
eqgabl.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
eqgabl  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3  |-  X  =  ( Base `  G
)
2 eqid 2193 . . 3  |-  ( invg `  G )  =  ( invg `  G )
3 eqid 2193 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqgabl.r . . 3  |-  .~  =  ( G ~QG  S )
51, 2, 3, 4eqgval 13293 . 2  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S ) ) )
6 simpll 527 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  G  e.  Abel )
7 ablgrp 13359 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
87ad2antrr 488 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  G  e.  Grp )
9 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  A  e.  X )
101, 2grpinvcl 13120 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( invg `  G ) `  A
)  e.  X )
12 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  B  e.  X )
131, 3ablcom 13373 . . . . . . 7  |-  ( ( G  e.  Abel  /\  (
( invg `  G ) `  A
)  e.  X  /\  B  e.  X )  ->  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  =  ( B ( +g  `  G
) ( ( invg `  G ) `
 A ) ) )
146, 11, 12, 13syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  =  ( B ( +g  `  G ) ( ( invg `  G
) `  A )
) )
15 eqgabl.n . . . . . . . 8  |-  .-  =  ( -g `  G )
161, 3, 2, 15grpsubval 13118 . . . . . . 7  |-  ( ( B  e.  X  /\  A  e.  X )  ->  ( B  .-  A
)  =  ( B ( +g  `  G
) ( ( invg `  G ) `
 A ) ) )
1712, 9, 16syl2anc 411 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( B  .-  A )  =  ( B ( +g  `  G ) ( ( invg `  G
) `  A )
) )
1814, 17eqtr4d 2229 . . . . 5  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  =  ( B  .-  A
) )
1918eleq1d 2262 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S  <->  ( B  .-  A )  e.  S ) )
2019pm5.32da 452 . . 3  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  (
( ( A  e.  X  /\  B  e.  X )  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( B  .-  A
)  e.  S ) ) )
21 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S
)  <->  ( ( A  e.  X  /\  B  e.  X )  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S ) )
22 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( B  .-  A )  e.  S )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( B  .-  A
)  e.  S ) )
2320, 21, 223bitr4g 223 . 2  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  (
( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S
)  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )
245, 23bitrd 188 1  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3153   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   Grpcgrp 13072   invgcminusg 13073   -gcsg 13074   ~QG cqg 13239   Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-eqg 13242  df-cmn 13356  df-abl 13357
This theorem is referenced by:  qusecsub  13401  2idlcpblrng  14019  zndvds  14137
  Copyright terms: Public domain W3C validator