ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgabl Unicode version

Theorem eqgabl 13292
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x  |-  X  =  ( Base `  G
)
eqgabl.n  |-  .-  =  ( -g `  G )
eqgabl.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
eqgabl  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3  |-  X  =  ( Base `  G
)
2 eqid 2189 . . 3  |-  ( invg `  G )  =  ( invg `  G )
3 eqid 2189 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqgabl.r . . 3  |-  .~  =  ( G ~QG  S )
51, 2, 3, 4eqgval 13187 . 2  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S ) ) )
6 simpll 527 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  G  e.  Abel )
7 ablgrp 13253 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
87ad2antrr 488 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  G  e.  Grp )
9 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  A  e.  X )
101, 2grpinvcl 13015 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( invg `  G ) `  A
)  e.  X )
12 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  B  e.  X )
131, 3ablcom 13267 . . . . . . 7  |-  ( ( G  e.  Abel  /\  (
( invg `  G ) `  A
)  e.  X  /\  B  e.  X )  ->  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  =  ( B ( +g  `  G
) ( ( invg `  G ) `
 A ) ) )
146, 11, 12, 13syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  =  ( B ( +g  `  G ) ( ( invg `  G
) `  A )
) )
15 eqgabl.n . . . . . . . 8  |-  .-  =  ( -g `  G )
161, 3, 2, 15grpsubval 13013 . . . . . . 7  |-  ( ( B  e.  X  /\  A  e.  X )  ->  ( B  .-  A
)  =  ( B ( +g  `  G
) ( ( invg `  G ) `
 A ) ) )
1712, 9, 16syl2anc 411 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( B  .-  A )  =  ( B ( +g  `  G ) ( ( invg `  G
) `  A )
) )
1814, 17eqtr4d 2225 . . . . 5  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  =  ( B  .-  A
) )
1918eleq1d 2258 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S  <->  ( B  .-  A )  e.  S ) )
2019pm5.32da 452 . . 3  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  (
( ( A  e.  X  /\  B  e.  X )  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( B  .-  A
)  e.  S ) ) )
21 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S
)  <->  ( ( A  e.  X  /\  B  e.  X )  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S ) )
22 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( B  .-  A )  e.  S )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( B  .-  A
)  e.  S ) )
2320, 21, 223bitr4g 223 . 2  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  (
( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S
)  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )
245, 23bitrd 188 1  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160    C_ wss 3144   class class class wbr 4021   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   Grpcgrp 12968   invgcminusg 12969   -gcsg 12970   ~QG cqg 13133   Abelcabl 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-plusg 12613  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-sbg 12973  df-eqg 13136  df-cmn 13250  df-abl 13251
This theorem is referenced by:  qusecsub  13293  2idlcpblrng  13863
  Copyright terms: Public domain W3C validator