| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgabl | Unicode version | ||
| Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| eqgabl.x |
|
| eqgabl.n |
|
| eqgabl.r |
|
| Ref | Expression |
|---|---|
| eqgabl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgabl.x |
. . 3
| |
| 2 | eqid 2205 |
. . 3
| |
| 3 | eqid 2205 |
. . 3
| |
| 4 | eqgabl.r |
. . 3
| |
| 5 | 1, 2, 3, 4 | eqgval 13592 |
. 2
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | ablgrp 13658 |
. . . . . . . . 9
| |
| 8 | 7 | ad2antrr 488 |
. . . . . . . 8
|
| 9 | simprl 529 |
. . . . . . . 8
| |
| 10 | 1, 2 | grpinvcl 13413 |
. . . . . . . 8
|
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | simprr 531 |
. . . . . . 7
| |
| 13 | 1, 3 | ablcom 13672 |
. . . . . . 7
|
| 14 | 6, 11, 12, 13 | syl3anc 1250 |
. . . . . 6
|
| 15 | eqgabl.n |
. . . . . . . 8
| |
| 16 | 1, 3, 2, 15 | grpsubval 13411 |
. . . . . . 7
|
| 17 | 12, 9, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | 14, 17 | eqtr4d 2241 |
. . . . 5
|
| 19 | 18 | eleq1d 2274 |
. . . 4
|
| 20 | 19 | pm5.32da 452 |
. . 3
|
| 21 | df-3an 983 |
. . 3
| |
| 22 | df-3an 983 |
. . 3
| |
| 23 | 20, 21, 22 | 3bitr4g 223 |
. 2
|
| 24 | 5, 23 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-inn 9039 df-2 9097 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-sbg 13370 df-eqg 13541 df-cmn 13655 df-abl 13656 |
| This theorem is referenced by: qusecsub 13700 2idlcpblrng 14318 zndvds 14444 |
| Copyright terms: Public domain | W3C validator |