| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgabl | GIF version | ||
| Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| eqgabl.x | ⊢ 𝑋 = (Base‘𝐺) |
| eqgabl.n | ⊢ − = (-g‘𝐺) |
| eqgabl.r | ⊢ ∼ = (𝐺 ~QG 𝑆) |
| Ref | Expression |
|---|---|
| eqgabl | ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2204 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | eqid 2204 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqgabl.r | . . 3 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
| 5 | 1, 2, 3, 4 | eqgval 13530 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆))) |
| 6 | simpll 527 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Abel) | |
| 7 | ablgrp 13596 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | 7 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 9 | simprl 529 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 10 | 1, 2 | grpinvcl 13351 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 11 | 8, 9, 10 | syl2anc 411 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 12 | simprr 531 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 13 | 1, 3 | ablcom 13610 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 14 | 6, 11, 12, 13 | syl3anc 1249 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 15 | eqgabl.n | . . . . . . . 8 ⊢ − = (-g‘𝐺) | |
| 16 | 1, 3, 2, 15 | grpsubval 13349 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 17 | 12, 9, 16 | syl2anc 411 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 − 𝐴) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 18 | 14, 17 | eqtr4d 2240 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵 − 𝐴)) |
| 19 | 18 | eleq1d 2273 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 − 𝐴) ∈ 𝑆)) |
| 20 | 19 | pm5.32da 452 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| 21 | df-3an 982 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆)) | |
| 22 | df-3an 982 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵 − 𝐴) ∈ 𝑆)) | |
| 23 | 20, 21, 22 | 3bitr4g 223 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| 24 | 5, 23 | bitrd 188 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 Basecbs 12803 +gcplusg 12880 Grpcgrp 13303 invgcminusg 13304 -gcsg 13305 ~QG cqg 13476 Abelcabl 13592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-sbg 13308 df-eqg 13479 df-cmn 13593 df-abl 13594 |
| This theorem is referenced by: qusecsub 13638 2idlcpblrng 14256 zndvds 14382 |
| Copyright terms: Public domain | W3C validator |