![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqgabl | GIF version |
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
eqgabl.x | ⊢ 𝑋 = (Base‘𝐺) |
eqgabl.n | ⊢ − = (-g‘𝐺) |
eqgabl.r | ⊢ ∼ = (𝐺 ~QG 𝑆) |
Ref | Expression |
---|---|
eqgabl | ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqgabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2193 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | eqid 2193 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqgabl.r | . . 3 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
5 | 1, 2, 3, 4 | eqgval 13296 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆))) |
6 | simpll 527 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Abel) | |
7 | ablgrp 13362 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
8 | 7 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Grp) |
9 | simprl 529 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
10 | 1, 2 | grpinvcl 13123 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
11 | 8, 9, 10 | syl2anc 411 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
12 | simprr 531 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
13 | 1, 3 | ablcom 13376 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
14 | 6, 11, 12, 13 | syl3anc 1249 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
15 | eqgabl.n | . . . . . . . 8 ⊢ − = (-g‘𝐺) | |
16 | 1, 3, 2, 15 | grpsubval 13121 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
17 | 12, 9, 16 | syl2anc 411 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 − 𝐴) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
18 | 14, 17 | eqtr4d 2229 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵 − 𝐴)) |
19 | 18 | eleq1d 2262 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 − 𝐴) ∈ 𝑆)) |
20 | 19 | pm5.32da 452 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
21 | df-3an 982 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆)) | |
22 | df-3an 982 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵 − 𝐴) ∈ 𝑆)) | |
23 | 20, 21, 22 | 3bitr4g 223 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
24 | 5, 23 | bitrd 188 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Grpcgrp 13075 invgcminusg 13076 -gcsg 13077 ~QG cqg 13242 Abelcabl 13358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-eqg 13245 df-cmn 13359 df-abl 13360 |
This theorem is referenced by: qusecsub 13404 2idlcpblrng 14022 zndvds 14148 |
Copyright terms: Public domain | W3C validator |