| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgabl | GIF version | ||
| Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| eqgabl.x | ⊢ 𝑋 = (Base‘𝐺) |
| eqgabl.n | ⊢ − = (-g‘𝐺) |
| eqgabl.r | ⊢ ∼ = (𝐺 ~QG 𝑆) |
| Ref | Expression |
|---|---|
| eqgabl | ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2207 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | eqid 2207 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqgabl.r | . . 3 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
| 5 | 1, 2, 3, 4 | eqgval 13674 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆))) |
| 6 | simpll 527 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Abel) | |
| 7 | ablgrp 13740 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | 7 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 9 | simprl 529 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 10 | 1, 2 | grpinvcl 13495 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 11 | 8, 9, 10 | syl2anc 411 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 12 | simprr 531 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 13 | 1, 3 | ablcom 13754 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 14 | 6, 11, 12, 13 | syl3anc 1250 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 15 | eqgabl.n | . . . . . . . 8 ⊢ − = (-g‘𝐺) | |
| 16 | 1, 3, 2, 15 | grpsubval 13493 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 17 | 12, 9, 16 | syl2anc 411 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 − 𝐴) = (𝐵(+g‘𝐺)((invg‘𝐺)‘𝐴))) |
| 18 | 14, 17 | eqtr4d 2243 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) = (𝐵 − 𝐴)) |
| 19 | 18 | eleq1d 2276 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 − 𝐴) ∈ 𝑆)) |
| 20 | 19 | pm5.32da 452 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| 21 | df-3an 983 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆)) | |
| 22 | df-3an 983 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵 − 𝐴) ∈ 𝑆)) | |
| 23 | 20, 21, 22 | 3bitr4g 223 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴)(+g‘𝐺)𝐵) ∈ 𝑆) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| 24 | 5, 23 | bitrd 188 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 Grpcgrp 13447 invgcminusg 13448 -gcsg 13449 ~QG cqg 13620 Abelcabl 13736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 df-eqg 13623 df-cmn 13737 df-abl 13738 |
| This theorem is referenced by: qusecsub 13782 2idlcpblrng 14400 zndvds 14526 |
| Copyright terms: Public domain | W3C validator |