ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zndvds Unicode version

Theorem zndvds 14281
Description: Express equality of equivalence classes in  ZZ  /  n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y  |-  Y  =  (ℤ/n `  N )
zndvds.2  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
zndvds  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  A
)  =  ( L `
 B )  <->  N  ||  ( A  -  B )
) )

Proof of Theorem zndvds
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqcom 2198 . 2  |-  ( ( L `  A )  =  ( L `  B )  <->  ( L `  B )  =  ( L `  A ) )
2 eqid 2196 . . . . . 6  |-  (RSpan ` ring )  =  (RSpan ` ring )
3 eqid 2196 . . . . . 6  |-  (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  =  (ring ~QG  (
(RSpan ` ring ) `  { N } ) )
4 zncyg.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
5 zndvds.2 . . . . . 6  |-  L  =  ( ZRHom `  Y
)
62, 3, 4, 5znzrhval 14279 . . . . 5  |-  ( ( N  e.  NN0  /\  B  e.  ZZ )  ->  ( L `  B
)  =  [ B ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )
763adant2 1018 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( L `  B )  =  [ B ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) )
82, 3, 4, 5znzrhval 14279 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  =  [ A ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )
983adant3 1019 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( L `  A )  =  [ A ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) )
107, 9eqeq12d 2211 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  B
)  =  ( L `
 A )  <->  [ B ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) )  =  [ A ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) )
11 zringring 14225 . . . . . 6  |-ring  e.  Ring
12 nn0z 9363 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13123ad2ant1 1020 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  ZZ )
1413snssd 3768 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  { N }  C_  ZZ )
15 zringbas 14228 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
16 eqid 2196 . . . . . . . 8  |-  (LIdeal ` ring )  =  (LIdeal ` ring )
172, 15, 16rspcl 14123 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  { N }  C_  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring ) )
1811, 14, 17sylancr 414 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring ) )
1916lidlsubg 14118 . . . . . 6  |-  ( (ring  e. 
Ring  /\  ( (RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring ) )  ->  (
(RSpan ` ring ) `  { N } )  e.  (SubGrp ` ring ) )
2011, 18, 19sylancr 414 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  e.  (SubGrp ` ring ) )
2115, 3eqger 13430 . . . . 5  |-  ( ( (RSpan ` ring ) `  { N } )  e.  (SubGrp ` ring )  ->  (ring ~QG  (
(RSpan ` ring ) `  { N } ) )  Er  ZZ )
2220, 21syl 14 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  Er  ZZ )
23 simp3 1001 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
2422, 23erth 6647 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) A  <->  [ B ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  =  [ A ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) )
25 zringabl 14226 . . . . 5  |-ring  e.  Abel
2615, 16lidlss 14108 . . . . . 6  |-  ( ( (RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring )  ->  ( (RSpan ` ring ) `  { N } ) 
C_  ZZ )
2718, 26syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  C_  ZZ )
28 eqid 2196 . . . . . 6  |-  ( -g ` ring )  =  ( -g ` ring )
2915, 28, 3eqgabl 13536 . . . . 5  |-  ( (ring  e. 
Abel  /\  ( (RSpan ` ring ) `  { N } ) 
C_  ZZ )  -> 
( B (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) A  <-> 
( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
3025, 27, 29sylancr 414 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) A  <-> 
( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
31 simp2 1000 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
3223, 31jca 306 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
3332biantrurd 305 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
34 df-3an 982 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) )  <->  ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) )
3533, 34bitr4di 198 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  ( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
36 zsubrg 14213 . . . . . . . . 9  |-  ZZ  e.  (SubRing ` fld )
37 subrgsubg 13859 . . . . . . . . 9  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubGrp ` fld ) )
3836, 37mp1i 10 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ZZ  e.  (SubGrp ` fld ) )
39 cnfldsub 14207 . . . . . . . . 9  |-  -  =  ( -g ` fld )
40 df-zring 14223 . . . . . . . . 9  |-ring  =  (flds  ZZ )
4139, 40, 28subgsub 13392 . . . . . . . 8  |-  ( ( ZZ  e.  (SubGrp ` fld )  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B )  =  ( A ( -g ` ring ) B ) )
4238, 41syld3an1 1295 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B )  =  ( A (
-g ` ring ) B ) )
4342eqcomd 2202 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A ( -g ` ring ) B )  =  ( A  -  B
) )
44 dvdsrzring 14235 . . . . . . . 8  |-  ||  =  ( ||r `
ring )
4515, 2, 44rspsn 14166 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  N  e.  ZZ )  ->  ( (RSpan ` ring ) `  { N } )  =  { x  |  N  ||  x }
)
4611, 13, 45sylancr 414 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  =  {
x  |  N  ||  x } )
4743, 46eleq12d 2267 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  ( A  -  B )  e.  {
x  |  N  ||  x } ) )
4831, 23zsubcld 9470 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B )  e.  ZZ )
49 breq2 4038 . . . . . . 7  |-  ( x  =  ( A  -  B )  ->  ( N  ||  x  <->  N  ||  ( A  -  B )
) )
5049elabg 2910 . . . . . 6  |-  ( ( A  -  B )  e.  ZZ  ->  (
( A  -  B
)  e.  { x  |  N  ||  x }  <->  N 
||  ( A  -  B ) ) )
5148, 50syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  -  B
)  e.  { x  |  N  ||  x }  <->  N 
||  ( A  -  B ) ) )
5247, 51bitrd 188 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  N  ||  ( A  -  B )
) )
5330, 35, 523bitr2d 216 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) A  <-> 
N  ||  ( A  -  B ) ) )
5410, 24, 533bitr2d 216 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  B
)  =  ( L `
 A )  <->  N  ||  ( A  -  B )
) )
551, 54bitrid 192 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  A
)  =  ( L `
 B )  <->  N  ||  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182    C_ wss 3157   {csn 3623   class class class wbr 4034   ` cfv 5259  (class class class)co 5925    Er wer 6598   [cec 6599    - cmin 8214   NN0cn0 9266   ZZcz 9343    || cdvds 11969   -gcsg 13204  SubGrpcsubg 13373   ~QG cqg 13375   Abelcabl 13491   Ringcrg 13628  SubRingcsubrg 13849  LIdealclidl 14099  RSpancrsp 14100  ℂfldccnfld 14188  ℤringczring 14222   ZRHomczrh 14243  ℤ/nczn 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-frec 6458  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-cj 11024  df-abs 11181  df-dvds 11970  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-sbg 13207  df-mulg 13326  df-subg 13376  df-nsg 13377  df-eqg 13378  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-ur 13592  df-srg 13596  df-ring 13630  df-cring 13631  df-oppr 13700  df-dvdsr 13721  df-rhm 13784  df-subrg 13851  df-lmod 13921  df-lssm 13985  df-lsp 14019  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-rsp 14102  df-2idl 14132  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223  df-zrh 14246  df-zn 14248
This theorem is referenced by:  zndvds0  14282  znf1o  14283  znunit  14291  lgseisenlem3  15397  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator