| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zndvds | Unicode version | ||
| Description: Express equality of
equivalence classes in |
| Ref | Expression |
|---|---|
| zncyg.y |
|
| zndvds.2 |
|
| Ref | Expression |
|---|---|
| zndvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2211 |
. 2
| |
| 2 | eqid 2209 |
. . . . . 6
| |
| 3 | eqid 2209 |
. . . . . 6
| |
| 4 | zncyg.y |
. . . . . 6
| |
| 5 | zndvds.2 |
. . . . . 6
| |
| 6 | 2, 3, 4, 5 | znzrhval 14576 |
. . . . 5
|
| 7 | 6 | 3adant2 1021 |
. . . 4
|
| 8 | 2, 3, 4, 5 | znzrhval 14576 |
. . . . 5
|
| 9 | 8 | 3adant3 1022 |
. . . 4
|
| 10 | 7, 9 | eqeq12d 2224 |
. . 3
|
| 11 | zringring 14522 |
. . . . . 6
| |
| 12 | nn0z 9434 |
. . . . . . . . 9
| |
| 13 | 12 | 3ad2ant1 1023 |
. . . . . . . 8
|
| 14 | 13 | snssd 3792 |
. . . . . . 7
|
| 15 | zringbas 14525 |
. . . . . . . 8
| |
| 16 | eqid 2209 |
. . . . . . . 8
| |
| 17 | 2, 15, 16 | rspcl 14420 |
. . . . . . 7
|
| 18 | 11, 14, 17 | sylancr 414 |
. . . . . 6
|
| 19 | 16 | lidlsubg 14415 |
. . . . . 6
|
| 20 | 11, 18, 19 | sylancr 414 |
. . . . 5
|
| 21 | 15, 3 | eqger 13727 |
. . . . 5
|
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | simp3 1004 |
. . . 4
| |
| 24 | 22, 23 | erth 6696 |
. . 3
|
| 25 | zringabl 14523 |
. . . . 5
| |
| 26 | 15, 16 | lidlss 14405 |
. . . . . 6
|
| 27 | 18, 26 | syl 14 |
. . . . 5
|
| 28 | eqid 2209 |
. . . . . 6
| |
| 29 | 15, 28, 3 | eqgabl 13833 |
. . . . 5
|
| 30 | 25, 27, 29 | sylancr 414 |
. . . 4
|
| 31 | simp2 1003 |
. . . . . . 7
| |
| 32 | 23, 31 | jca 306 |
. . . . . 6
|
| 33 | 32 | biantrurd 305 |
. . . . 5
|
| 34 | df-3an 985 |
. . . . 5
| |
| 35 | 33, 34 | bitr4di 198 |
. . . 4
|
| 36 | zsubrg 14510 |
. . . . . . . . 9
| |
| 37 | subrgsubg 14156 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mp1i 10 |
. . . . . . . 8
|
| 39 | cnfldsub 14504 |
. . . . . . . . 9
| |
| 40 | df-zring 14520 |
. . . . . . . . 9
| |
| 41 | 39, 40, 28 | subgsub 13689 |
. . . . . . . 8
|
| 42 | 38, 41 | syld3an1 1298 |
. . . . . . 7
|
| 43 | 42 | eqcomd 2215 |
. . . . . 6
|
| 44 | dvdsrzring 14532 |
. . . . . . . 8
| |
| 45 | 15, 2, 44 | rspsn 14463 |
. . . . . . 7
|
| 46 | 11, 13, 45 | sylancr 414 |
. . . . . 6
|
| 47 | 43, 46 | eleq12d 2280 |
. . . . 5
|
| 48 | 31, 23 | zsubcld 9542 |
. . . . . 6
|
| 49 | breq2 4066 |
. . . . . . 7
| |
| 50 | 49 | elabg 2929 |
. . . . . 6
|
| 51 | 48, 50 | syl 14 |
. . . . 5
|
| 52 | 47, 51 | bitrd 188 |
. . . 4
|
| 53 | 30, 35, 52 | 3bitr2d 216 |
. . 3
|
| 54 | 10, 24, 53 | 3bitr2d 216 |
. 2
|
| 55 | 1, 54 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-recs 6421 df-frec 6507 df-er 6650 df-ec 6652 df-qs 6656 df-map 6767 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-rp 9818 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-cj 11319 df-abs 11476 df-dvds 12265 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-starv 13091 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-unif 13099 df-0g 13257 df-topgen 13259 df-iimas 13301 df-qus 13302 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-mhm 13458 df-grp 13502 df-minusg 13503 df-sbg 13504 df-mulg 13623 df-subg 13673 df-nsg 13674 df-eqg 13675 df-ghm 13744 df-cmn 13789 df-abl 13790 df-mgp 13850 df-rng 13862 df-ur 13889 df-srg 13893 df-ring 13927 df-cring 13928 df-oppr 13997 df-dvdsr 14018 df-rhm 14081 df-subrg 14148 df-lmod 14218 df-lssm 14282 df-lsp 14316 df-sra 14364 df-rgmod 14365 df-lidl 14398 df-rsp 14399 df-2idl 14429 df-bl 14475 df-mopn 14476 df-fg 14478 df-metu 14479 df-cnfld 14486 df-zring 14520 df-zrh 14543 df-zn 14545 |
| This theorem is referenced by: zndvds0 14579 znf1o 14580 znunit 14588 lgseisenlem3 15716 lgseisenlem4 15717 |
| Copyright terms: Public domain | W3C validator |