| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zndvds | Unicode version | ||
| Description: Express equality of
equivalence classes in |
| Ref | Expression |
|---|---|
| zncyg.y |
|
| zndvds.2 |
|
| Ref | Expression |
|---|---|
| zndvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 |
. 2
| |
| 2 | eqid 2229 |
. . . . . 6
| |
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | zncyg.y |
. . . . . 6
| |
| 5 | zndvds.2 |
. . . . . 6
| |
| 6 | 2, 3, 4, 5 | znzrhval 14619 |
. . . . 5
|
| 7 | 6 | 3adant2 1040 |
. . . 4
|
| 8 | 2, 3, 4, 5 | znzrhval 14619 |
. . . . 5
|
| 9 | 8 | 3adant3 1041 |
. . . 4
|
| 10 | 7, 9 | eqeq12d 2244 |
. . 3
|
| 11 | zringring 14565 |
. . . . . 6
| |
| 12 | nn0z 9474 |
. . . . . . . . 9
| |
| 13 | 12 | 3ad2ant1 1042 |
. . . . . . . 8
|
| 14 | 13 | snssd 3813 |
. . . . . . 7
|
| 15 | zringbas 14568 |
. . . . . . . 8
| |
| 16 | eqid 2229 |
. . . . . . . 8
| |
| 17 | 2, 15, 16 | rspcl 14463 |
. . . . . . 7
|
| 18 | 11, 14, 17 | sylancr 414 |
. . . . . 6
|
| 19 | 16 | lidlsubg 14458 |
. . . . . 6
|
| 20 | 11, 18, 19 | sylancr 414 |
. . . . 5
|
| 21 | 15, 3 | eqger 13769 |
. . . . 5
|
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | simp3 1023 |
. . . 4
| |
| 24 | 22, 23 | erth 6734 |
. . 3
|
| 25 | zringabl 14566 |
. . . . 5
| |
| 26 | 15, 16 | lidlss 14448 |
. . . . . 6
|
| 27 | 18, 26 | syl 14 |
. . . . 5
|
| 28 | eqid 2229 |
. . . . . 6
| |
| 29 | 15, 28, 3 | eqgabl 13875 |
. . . . 5
|
| 30 | 25, 27, 29 | sylancr 414 |
. . . 4
|
| 31 | simp2 1022 |
. . . . . . 7
| |
| 32 | 23, 31 | jca 306 |
. . . . . 6
|
| 33 | 32 | biantrurd 305 |
. . . . 5
|
| 34 | df-3an 1004 |
. . . . 5
| |
| 35 | 33, 34 | bitr4di 198 |
. . . 4
|
| 36 | zsubrg 14553 |
. . . . . . . . 9
| |
| 37 | subrgsubg 14199 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mp1i 10 |
. . . . . . . 8
|
| 39 | cnfldsub 14547 |
. . . . . . . . 9
| |
| 40 | df-zring 14563 |
. . . . . . . . 9
| |
| 41 | 39, 40, 28 | subgsub 13731 |
. . . . . . . 8
|
| 42 | 38, 41 | syld3an1 1317 |
. . . . . . 7
|
| 43 | 42 | eqcomd 2235 |
. . . . . 6
|
| 44 | dvdsrzring 14575 |
. . . . . . . 8
| |
| 45 | 15, 2, 44 | rspsn 14506 |
. . . . . . 7
|
| 46 | 11, 13, 45 | sylancr 414 |
. . . . . 6
|
| 47 | 43, 46 | eleq12d 2300 |
. . . . 5
|
| 48 | 31, 23 | zsubcld 9582 |
. . . . . 6
|
| 49 | breq2 4087 |
. . . . . . 7
| |
| 50 | 49 | elabg 2949 |
. . . . . 6
|
| 51 | 48, 50 | syl 14 |
. . . . 5
|
| 52 | 47, 51 | bitrd 188 |
. . . 4
|
| 53 | 30, 35, 52 | 3bitr2d 216 |
. . 3
|
| 54 | 10, 24, 53 | 3bitr2d 216 |
. 2
|
| 55 | 1, 54 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-recs 6457 df-frec 6543 df-er 6688 df-ec 6690 df-qs 6694 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-cj 11361 df-abs 11518 df-dvds 12307 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-iimas 13343 df-qus 13344 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-grp 13544 df-minusg 13545 df-sbg 13546 df-mulg 13665 df-subg 13715 df-nsg 13716 df-eqg 13717 df-ghm 13786 df-cmn 13831 df-abl 13832 df-mgp 13892 df-rng 13904 df-ur 13931 df-srg 13935 df-ring 13969 df-cring 13970 df-oppr 14039 df-dvdsr 14060 df-rhm 14124 df-subrg 14191 df-lmod 14261 df-lssm 14325 df-lsp 14359 df-sra 14407 df-rgmod 14408 df-lidl 14441 df-rsp 14442 df-2idl 14472 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 df-zrh 14586 df-zn 14588 |
| This theorem is referenced by: zndvds0 14622 znf1o 14623 znunit 14631 lgseisenlem3 15759 lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |