ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zndvds Unicode version

Theorem zndvds 14137
Description: Express equality of equivalence classes in  ZZ  /  n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y  |-  Y  =  (ℤ/n `  N )
zndvds.2  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
zndvds  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  A
)  =  ( L `
 B )  <->  N  ||  ( A  -  B )
) )

Proof of Theorem zndvds
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqcom 2195 . 2  |-  ( ( L `  A )  =  ( L `  B )  <->  ( L `  B )  =  ( L `  A ) )
2 eqid 2193 . . . . . 6  |-  (RSpan ` ring )  =  (RSpan ` ring )
3 eqid 2193 . . . . . 6  |-  (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  =  (ring ~QG  (
(RSpan ` ring ) `  { N } ) )
4 zncyg.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
5 zndvds.2 . . . . . 6  |-  L  =  ( ZRHom `  Y
)
62, 3, 4, 5znzrhval 14135 . . . . 5  |-  ( ( N  e.  NN0  /\  B  e.  ZZ )  ->  ( L `  B
)  =  [ B ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )
763adant2 1018 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( L `  B )  =  [ B ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) )
82, 3, 4, 5znzrhval 14135 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  =  [ A ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) )
983adant3 1019 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( L `  A )  =  [ A ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) )
107, 9eqeq12d 2208 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  B
)  =  ( L `
 A )  <->  [ B ] (ring ~QG  (
(RSpan ` ring ) `  { N } ) )  =  [ A ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) )
11 zringring 14081 . . . . . 6  |-ring  e.  Ring
12 nn0z 9337 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13123ad2ant1 1020 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  ZZ )
1413snssd 3763 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  { N }  C_  ZZ )
15 zringbas 14084 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
16 eqid 2193 . . . . . . . 8  |-  (LIdeal ` ring )  =  (LIdeal ` ring )
172, 15, 16rspcl 13987 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  { N }  C_  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring ) )
1811, 14, 17sylancr 414 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring ) )
1916lidlsubg 13982 . . . . . 6  |-  ( (ring  e. 
Ring  /\  ( (RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring ) )  ->  (
(RSpan ` ring ) `  { N } )  e.  (SubGrp ` ring ) )
2011, 18, 19sylancr 414 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  e.  (SubGrp ` ring ) )
2115, 3eqger 13294 . . . . 5  |-  ( ( (RSpan ` ring ) `  { N } )  e.  (SubGrp ` ring )  ->  (ring ~QG  (
(RSpan ` ring ) `  { N } ) )  Er  ZZ )
2220, 21syl 14 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  Er  ZZ )
23 simp3 1001 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
2422, 23erth 6633 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) A  <->  [ B ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) )  =  [ A ] (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) ) )
25 zringabl 14082 . . . . 5  |-ring  e.  Abel
2615, 16lidlss 13972 . . . . . 6  |-  ( ( (RSpan ` ring ) `  { N } )  e.  (LIdeal ` ring )  ->  ( (RSpan ` ring ) `  { N } ) 
C_  ZZ )
2718, 26syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  C_  ZZ )
28 eqid 2193 . . . . . 6  |-  ( -g ` ring )  =  ( -g ` ring )
2915, 28, 3eqgabl 13400 . . . . 5  |-  ( (ring  e. 
Abel  /\  ( (RSpan ` ring ) `  { N } ) 
C_  ZZ )  -> 
( B (ring ~QG  ( (RSpan ` ring ) `  { N } ) ) A  <-> 
( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
3025, 27, 29sylancr 414 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) A  <-> 
( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
31 simp2 1000 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
3223, 31jca 306 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
3332biantrurd 305 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
34 df-3an 982 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) )  <->  ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) )
3533, 34bitr4di 198 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  ( B  e.  ZZ  /\  A  e.  ZZ  /\  ( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } ) ) ) )
36 zsubrg 14069 . . . . . . . . 9  |-  ZZ  e.  (SubRing ` fld )
37 subrgsubg 13723 . . . . . . . . 9  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubGrp ` fld ) )
3836, 37mp1i 10 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ZZ  e.  (SubGrp ` fld ) )
39 cnfldsub 14063 . . . . . . . . 9  |-  -  =  ( -g ` fld )
40 df-zring 14079 . . . . . . . . 9  |-ring  =  (flds  ZZ )
4139, 40, 28subgsub 13256 . . . . . . . 8  |-  ( ( ZZ  e.  (SubGrp ` fld )  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B )  =  ( A ( -g ` ring ) B ) )
4238, 41syld3an1 1295 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B )  =  ( A (
-g ` ring ) B ) )
4342eqcomd 2199 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A ( -g ` ring ) B )  =  ( A  -  B
) )
44 dvdsrzring 14091 . . . . . . . 8  |-  ||  =  ( ||r `
ring )
4515, 2, 44rspsn 14030 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  N  e.  ZZ )  ->  ( (RSpan ` ring ) `  { N } )  =  { x  |  N  ||  x }
)
4611, 13, 45sylancr 414 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
(RSpan ` ring ) `  { N } )  =  {
x  |  N  ||  x } )
4743, 46eleq12d 2264 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  ( A  -  B )  e.  {
x  |  N  ||  x } ) )
4831, 23zsubcld 9444 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B )  e.  ZZ )
49 breq2 4033 . . . . . . 7  |-  ( x  =  ( A  -  B )  ->  ( N  ||  x  <->  N  ||  ( A  -  B )
) )
5049elabg 2906 . . . . . 6  |-  ( ( A  -  B )  e.  ZZ  ->  (
( A  -  B
)  e.  { x  |  N  ||  x }  <->  N 
||  ( A  -  B ) ) )
5148, 50syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  -  B
)  e.  { x  |  N  ||  x }  <->  N 
||  ( A  -  B ) ) )
5247, 51bitrd 188 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A ( -g ` ring ) B )  e.  ( (RSpan ` ring ) `  { N } )  <->  N  ||  ( A  -  B )
) )
5330, 35, 523bitr2d 216 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B (ring ~QG  (
(RSpan ` ring ) `  { N } ) ) A  <-> 
N  ||  ( A  -  B ) ) )
5410, 24, 533bitr2d 216 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  B
)  =  ( L `
 A )  <->  N  ||  ( A  -  B )
) )
551, 54bitrid 192 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( L `  A
)  =  ( L `
 B )  <->  N  ||  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {cab 2179    C_ wss 3153   {csn 3618   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    Er wer 6584   [cec 6585    - cmin 8190   NN0cn0 9240   ZZcz 9317    || cdvds 11930   -gcsg 13074  SubGrpcsubg 13237   ~QG cqg 13239   Abelcabl 13355   Ringcrg 13492  SubRingcsubrg 13713  LIdealclidl 13963  RSpancrsp 13964  ℂfldccnfld 14047  ℤringczring 14078   ZRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-frec 6444  df-er 6587  df-ec 6589  df-qs 6593  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-cj 10986  df-dvds 11931  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-rhm 13648  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  zndvds0  14138  znf1o  14139  znunit  14147  lgseisenlem3  15188  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator