ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusecsub Unicode version

Theorem qusecsub 13868
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
qusecsub.x  |-  B  =  ( Base `  G
)
qusecsub.n  |-  .-  =  ( -g `  G )
qusecsub.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
qusecsub  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S
) )

Proof of Theorem qusecsub
StepHypRef Expression
1 qusecsub.x . . . . . 6  |-  B  =  ( Base `  G
)
21subgss 13711 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
32anim2i 342 . . . 4  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( G  e.  Abel  /\  S  C_  B
) )
43adantr 276 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( G  e.  Abel  /\  S  C_  B ) )
5 qusecsub.n . . . 4  |-  .-  =  ( -g `  G )
6 qusecsub.r . . . 4  |-  .~  =  ( G ~QG  S )
71, 5, 6eqgabl 13867 . . 3  |-  ( ( G  e.  Abel  /\  S  C_  B )  ->  ( X  .~  Y  <->  ( X  e.  B  /\  Y  e.  B  /\  ( Y 
.-  X )  e.  S ) ) )
84, 7syl 14 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .~  Y  <->  ( X  e.  B  /\  Y  e.  B  /\  ( Y 
.-  X )  e.  S ) ) )
91, 6eqger 13761 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  .~  Er  B
)
109ad2antlr 489 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  .~  Er  B )
11 simprl 529 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
1210, 11erth 6726 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .~  Y  <->  [ X ]  .~  =  [ Y ]  .~  ) )
13 df-3an 1004 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( Y  .-  X )  e.  S )  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( Y  .-  X
)  e.  S ) )
14 ibar 301 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .-  X )  e.  S  <->  ( ( X  e.  B  /\  Y  e.  B
)  /\  ( Y  .-  X )  e.  S
) ) )
1514adantl 277 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( Y  .-  X
)  e.  S  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( Y  .-  X
)  e.  S ) ) )
1613, 15bitr4id 199 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( X  e.  B  /\  Y  e.  B  /\  ( Y  .-  X
)  e.  S )  <-> 
( Y  .-  X
)  e.  S ) )
178, 12, 163bitr3d 218 1  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4083   ` cfv 5318  (class class class)co 6001    Er wer 6677   [cec 6678   Basecbs 13032   -gcsg 13535  SubGrpcsubg 13704   ~QG cqg 13706   Abelcabl 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-er 6680  df-ec 6682  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-eqg 13709  df-cmn 13823  df-abl 13824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator