ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusecsub Unicode version

Theorem qusecsub 13782
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
qusecsub.x  |-  B  =  ( Base `  G
)
qusecsub.n  |-  .-  =  ( -g `  G )
qusecsub.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
qusecsub  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S
) )

Proof of Theorem qusecsub
StepHypRef Expression
1 qusecsub.x . . . . . 6  |-  B  =  ( Base `  G
)
21subgss 13625 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
32anim2i 342 . . . 4  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( G  e.  Abel  /\  S  C_  B
) )
43adantr 276 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( G  e.  Abel  /\  S  C_  B ) )
5 qusecsub.n . . . 4  |-  .-  =  ( -g `  G )
6 qusecsub.r . . . 4  |-  .~  =  ( G ~QG  S )
71, 5, 6eqgabl 13781 . . 3  |-  ( ( G  e.  Abel  /\  S  C_  B )  ->  ( X  .~  Y  <->  ( X  e.  B  /\  Y  e.  B  /\  ( Y 
.-  X )  e.  S ) ) )
84, 7syl 14 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .~  Y  <->  ( X  e.  B  /\  Y  e.  B  /\  ( Y 
.-  X )  e.  S ) ) )
91, 6eqger 13675 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  .~  Er  B
)
109ad2antlr 489 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  .~  Er  B )
11 simprl 529 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
1210, 11erth 6689 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .~  Y  <->  [ X ]  .~  =  [ Y ]  .~  ) )
13 df-3an 983 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( Y  .-  X )  e.  S )  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( Y  .-  X
)  e.  S ) )
14 ibar 301 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .-  X )  e.  S  <->  ( ( X  e.  B  /\  Y  e.  B
)  /\  ( Y  .-  X )  e.  S
) ) )
1514adantl 277 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( Y  .-  X
)  e.  S  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( Y  .-  X
)  e.  S ) ) )
1613, 15bitr4id 199 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( X  e.  B  /\  Y  e.  B  /\  ( Y  .-  X
)  e.  S )  <-> 
( Y  .-  X
)  e.  S ) )
178, 12, 163bitr3d 218 1  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967    Er wer 6640   [cec 6641   Basecbs 12947   -gcsg 13449  SubGrpcsubg 13618   ~QG cqg 13620   Abelcabl 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-er 6643  df-ec 6645  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-eqg 13623  df-cmn 13737  df-abl 13738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator