ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusecsub Unicode version

Theorem qusecsub 13404
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
qusecsub.x  |-  B  =  ( Base `  G
)
qusecsub.n  |-  .-  =  ( -g `  G )
qusecsub.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
qusecsub  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S
) )

Proof of Theorem qusecsub
StepHypRef Expression
1 qusecsub.x . . . . . 6  |-  B  =  ( Base `  G
)
21subgss 13247 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
32anim2i 342 . . . 4  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( G  e.  Abel  /\  S  C_  B
) )
43adantr 276 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( G  e.  Abel  /\  S  C_  B ) )
5 qusecsub.n . . . 4  |-  .-  =  ( -g `  G )
6 qusecsub.r . . . 4  |-  .~  =  ( G ~QG  S )
71, 5, 6eqgabl 13403 . . 3  |-  ( ( G  e.  Abel  /\  S  C_  B )  ->  ( X  .~  Y  <->  ( X  e.  B  /\  Y  e.  B  /\  ( Y 
.-  X )  e.  S ) ) )
84, 7syl 14 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .~  Y  <->  ( X  e.  B  /\  Y  e.  B  /\  ( Y 
.-  X )  e.  S ) ) )
91, 6eqger 13297 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  .~  Er  B
)
109ad2antlr 489 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  .~  Er  B )
11 simprl 529 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
1210, 11erth 6635 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .~  Y  <->  [ X ]  .~  =  [ Y ]  .~  ) )
13 df-3an 982 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( Y  .-  X )  e.  S )  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( Y  .-  X
)  e.  S ) )
14 ibar 301 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .-  X )  e.  S  <->  ( ( X  e.  B  /\  Y  e.  B
)  /\  ( Y  .-  X )  e.  S
) ) )
1514adantl 277 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( Y  .-  X
)  e.  S  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( Y  .-  X
)  e.  S ) ) )
1613, 15bitr4id 199 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( X  e.  B  /\  Y  e.  B  /\  ( Y  .-  X
)  e.  S )  <-> 
( Y  .-  X
)  e.  S ) )
178, 12, 163bitr3d 218 1  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919    Er wer 6586   [cec 6587   Basecbs 12621   -gcsg 13077  SubGrpcsubg 13240   ~QG cqg 13242   Abelcabl 13358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-er 6589  df-ec 6591  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-eqg 13245  df-cmn 13359  df-abl 13360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator